Cargando…

Elastin‐Hyaluronan Bioconjugate as Bioactive Component in Electrospun Scaffolds

Hyaluronic acid or hyaluronan (HA) and elastin‐inspired peptides (EL) have been widely recognized as bioinspired materials useful in biomedical applications. The aim of the present work is the production of electrospun scaffolds as wound dressing materials which would benefit from synergic action of...

Descripción completa

Detalles Bibliográficos
Autores principales: Laezza, Antonio, Pepe, Antonietta, Bochicchio, Brigida
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805088/
https://www.ncbi.nlm.nih.gov/pubmed/35916026
http://dx.doi.org/10.1002/chem.202201959
Descripción
Sumario:Hyaluronic acid or hyaluronan (HA) and elastin‐inspired peptides (EL) have been widely recognized as bioinspired materials useful in biomedical applications. The aim of the present work is the production of electrospun scaffolds as wound dressing materials which would benefit from synergic action of the bioactivity of elastin peptides and the regenerative properties of hyaluronic acid. Taking advantage of thiol‐ene chemistry, a bioactive elastin peptide was successfully conjugated to methacrylated hyaluronic acid (MAHA) and electrospun together with poly‐d,l‐lactide (PDLLA). To the best of our knowledge, limited reports on peptide‐conjugated hyaluronic acid were described in literature, and none of these was employed for the production of electrospun scaffolds. The conformational studies carried out by Circular Dichroism (CD) on the bioconjugated compound confirmed the preservation of secondary structure of the peptide after conjugation while Scanning Electron Microscopy (SEM) revealed the supramolecular structure of the electrospun scaffolds. Overall, the study demonstrates that the bioconjugation of hyaluronic acid with the elastin peptide improved the electrospinning processability with improved characteristics in terms of morphology of the final scaffolds.