Cargando…
Development and verification of radiomics framework for computed tomography image segmentation
BACKGROUND: Radiomics has been considered an imaging marker for capturing quantitative image information (QII). The introduction of radiomics to image segmentation is desirable but challenging. PURPOSE: This study aims to develop and validate a radiomics‐based framework for image segmentation (RFIS)...
Autores principales: | Gu, Jiabing, Li, Baosheng, Shu, Huazhong, Zhu, Jian, Qiu, Qingtao, Bai, Tong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805121/ https://www.ncbi.nlm.nih.gov/pubmed/35917213 http://dx.doi.org/10.1002/mp.15904 |
Ejemplares similares
-
An unsupervised automatic segmentation algorithm for breast tissue classification of dedicated breast computed tomography images
por: Caballo, Marco, et al.
Publicado: (2018) -
Quantifying pulmonary perfusion from noncontrast computed tomography
por: Castillo, Edward, et al.
Publicado: (2021) -
Morphology-guided deep learning framework for segmentation of pancreas in computed tomography images
por: Qureshi, Touseef Ahmad, et al.
Publicado: (2022) -
Technical Note: Ontology‐guided radiomics analysis workflow (O‐RAW)
por: Shi, Zhenwei, et al.
Publicado: (2019) -
Multi‐marker quantitative radiomics for mass characterization in dedicated breast CT imaging
por: Caballo, Marco, et al.
Publicado: (2020)