Cargando…

Studies of parenchymal texture added to mammographic breast density and risk of breast cancer: a systematic review of the methods used in the literature

This systematic review aimed to assess the methods used to classify mammographic breast parenchymal features in relation to the prediction of future breast cancer. The databases including Medline (Ovid) 1946-, Embase.com 1947-, CINAHL Plus 1937-, Scopus 1823-, Cochrane Library (including CENTRAL), a...

Descripción completa

Detalles Bibliográficos
Autores principales: Anandarajah, Akila, Chen, Yongzhen, Colditz, Graham A., Hardi, Angela, Stoll, Carolyn, Jiang, Shu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805242/
https://www.ncbi.nlm.nih.gov/pubmed/36585732
http://dx.doi.org/10.1186/s13058-022-01600-5
Descripción
Sumario:This systematic review aimed to assess the methods used to classify mammographic breast parenchymal features in relation to the prediction of future breast cancer. The databases including Medline (Ovid) 1946-, Embase.com 1947-, CINAHL Plus 1937-, Scopus 1823-, Cochrane Library (including CENTRAL), and Clinicaltrials.gov were searched through October 2021 to extract published articles in English describing the relationship of parenchymal texture features with the risk of breast cancer. Twenty-eight articles published since 2016 were included in the final review. The identification of parenchymal texture features varied from using a predefined list to machine-driven identification. A reduction in the number of features chosen for subsequent analysis in relation to cancer incidence then varied across statistical approaches and machine learning methods. The variation in approach and number of features identified for inclusion in analysis precluded generating a quantitative summary or meta-analysis of the value of these features to improve predicting risk of future breast cancers. This updated overview of the state of the art revealed research gaps; based on these, we provide recommendations for future studies using parenchymal features for mammogram images to make use of accumulating image data, and external validation of prediction models that extend to 5 and 10 years to guide clinical risk management. Following these recommendations could enhance the applicability of models, helping improve risk classification and risk prediction for women to tailor screening and prevention strategies to the level of risk. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13058-022-01600-5.