Cargando…

Longitudinal Monitoring of Progressive Supranuclear Palsy using Body‐Worn Movement Sensors

BACKGROUND: We have previously shown that wearable technology and machine learning techniques can accurately discriminate between progressive supranuclear palsy (PSP), Parkinson's disease, and healthy controls. To date these techniques have not been applied in longitudinal studies of disease pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Sotirakis, Charalampos, Conway, Niall, Su, Zi, Villarroel, Mauricio, Tarassenko, Lionel, FitzGerald, James J., Antoniades, Chrystalina A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805249/
https://www.ncbi.nlm.nih.gov/pubmed/36054142
http://dx.doi.org/10.1002/mds.29194
_version_ 1784862300437479424
author Sotirakis, Charalampos
Conway, Niall
Su, Zi
Villarroel, Mauricio
Tarassenko, Lionel
FitzGerald, James J.
Antoniades, Chrystalina A.
author_facet Sotirakis, Charalampos
Conway, Niall
Su, Zi
Villarroel, Mauricio
Tarassenko, Lionel
FitzGerald, James J.
Antoniades, Chrystalina A.
author_sort Sotirakis, Charalampos
collection PubMed
description BACKGROUND: We have previously shown that wearable technology and machine learning techniques can accurately discriminate between progressive supranuclear palsy (PSP), Parkinson's disease, and healthy controls. To date these techniques have not been applied in longitudinal studies of disease progression in PSP. OBJECTIVES: We aimed to establish whether data collected by a body‐worn inertial measurement unit (IMU) network could predict clinical rating scale scores in PSP and whether it could be used to track disease progression. METHODS: We studied gait and postural stability in 17 participants with PSP over five visits at 3‐month intervals. Participants performed a 2‐minute walk and an assessment of postural stability by standing for 30 seconds with their eyes closed, while wearing an array of six IMUs. RESULTS: Thirty‐two gait and posture features were identified, which progressed significantly with time. A simple linear regression model incorporating the three features with the clearest progression pattern was able to detect statistically significant progression 3 months in advance of the clinical scores. A more complex linear regression and a random forest approach did not improve on this. CONCLUSIONS: The reduced variability of the models, in comparison to clinical rating scales, allows a significant change in disease status from baseline to be observed at an earlier stage. The current study sheds light on the individual features that are important in tracking disease progression. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
format Online
Article
Text
id pubmed-9805249
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-98052492023-01-06 Longitudinal Monitoring of Progressive Supranuclear Palsy using Body‐Worn Movement Sensors Sotirakis, Charalampos Conway, Niall Su, Zi Villarroel, Mauricio Tarassenko, Lionel FitzGerald, James J. Antoniades, Chrystalina A. Mov Disord Research Articles BACKGROUND: We have previously shown that wearable technology and machine learning techniques can accurately discriminate between progressive supranuclear palsy (PSP), Parkinson's disease, and healthy controls. To date these techniques have not been applied in longitudinal studies of disease progression in PSP. OBJECTIVES: We aimed to establish whether data collected by a body‐worn inertial measurement unit (IMU) network could predict clinical rating scale scores in PSP and whether it could be used to track disease progression. METHODS: We studied gait and postural stability in 17 participants with PSP over five visits at 3‐month intervals. Participants performed a 2‐minute walk and an assessment of postural stability by standing for 30 seconds with their eyes closed, while wearing an array of six IMUs. RESULTS: Thirty‐two gait and posture features were identified, which progressed significantly with time. A simple linear regression model incorporating the three features with the clearest progression pattern was able to detect statistically significant progression 3 months in advance of the clinical scores. A more complex linear regression and a random forest approach did not improve on this. CONCLUSIONS: The reduced variability of the models, in comparison to clinical rating scales, allows a significant change in disease status from baseline to be observed at an earlier stage. The current study sheds light on the individual features that are important in tracking disease progression. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society John Wiley & Sons, Inc. 2022-08-31 2022-11 /pmc/articles/PMC9805249/ /pubmed/36054142 http://dx.doi.org/10.1002/mds.29194 Text en © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Research Articles
Sotirakis, Charalampos
Conway, Niall
Su, Zi
Villarroel, Mauricio
Tarassenko, Lionel
FitzGerald, James J.
Antoniades, Chrystalina A.
Longitudinal Monitoring of Progressive Supranuclear Palsy using Body‐Worn Movement Sensors
title Longitudinal Monitoring of Progressive Supranuclear Palsy using Body‐Worn Movement Sensors
title_full Longitudinal Monitoring of Progressive Supranuclear Palsy using Body‐Worn Movement Sensors
title_fullStr Longitudinal Monitoring of Progressive Supranuclear Palsy using Body‐Worn Movement Sensors
title_full_unstemmed Longitudinal Monitoring of Progressive Supranuclear Palsy using Body‐Worn Movement Sensors
title_short Longitudinal Monitoring of Progressive Supranuclear Palsy using Body‐Worn Movement Sensors
title_sort longitudinal monitoring of progressive supranuclear palsy using body‐worn movement sensors
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805249/
https://www.ncbi.nlm.nih.gov/pubmed/36054142
http://dx.doi.org/10.1002/mds.29194
work_keys_str_mv AT sotirakischaralampos longitudinalmonitoringofprogressivesupranuclearpalsyusingbodywornmovementsensors
AT conwayniall longitudinalmonitoringofprogressivesupranuclearpalsyusingbodywornmovementsensors
AT suzi longitudinalmonitoringofprogressivesupranuclearpalsyusingbodywornmovementsensors
AT villarroelmauricio longitudinalmonitoringofprogressivesupranuclearpalsyusingbodywornmovementsensors
AT tarassenkolionel longitudinalmonitoringofprogressivesupranuclearpalsyusingbodywornmovementsensors
AT fitzgeraldjamesj longitudinalmonitoringofprogressivesupranuclearpalsyusingbodywornmovementsensors
AT antoniadeschrystalinaa longitudinalmonitoringofprogressivesupranuclearpalsyusingbodywornmovementsensors