Cargando…

Rapid astrocyte-dependent facilitation amplifies multi-vesicular release in hippocampal synapses

Synaptic facilitation is a major form of short-term plasticity typically driven by an increase in residual presynaptic calcium. Using near-total internal reflection fluorescence (near-TIRF) imaging of single vesicle release in cultured hippocampal synapses, we demonstrate a distinctive, release-depe...

Descripción completa

Detalles Bibliográficos
Autores principales: Myeong, Jongyun, Klyachko, Vitaly A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805313/
https://www.ncbi.nlm.nih.gov/pubmed/36516768
http://dx.doi.org/10.1016/j.celrep.2022.111820
Descripción
Sumario:Synaptic facilitation is a major form of short-term plasticity typically driven by an increase in residual presynaptic calcium. Using near-total internal reflection fluorescence (near-TIRF) imaging of single vesicle release in cultured hippocampal synapses, we demonstrate a distinctive, release-dependent form of facilitation in which probability of vesicle release is higher following a successful glutamate release event than following a failure. This phenomenon has an onset of ≤500 ms and lasts several seconds, resulting in clusters of successful release events. The release-dependent facilitation requires neuronal contact with astrocytes and astrocytic glutamate uptake by EAAT1. It is not observed in neurons grown alone or in the presence of astrocyte-conditioned media. This form of facilitation dynamically amplifies multi-vesicular release. Facilitation-evoked release events exhibit spatial clustering and have a preferential localization toward the active zone center. These results uncover a rapid astrocyte-dependent form of facilitation acting via modulation of multi-vesicular release and displaying distinctive spatiotemporal properties.