Cargando…
Prediction and risk assessment of sepsis-associated encephalopathy in ICU based on interpretable machine learning
Sepsis-associated encephalopathy (SAE) is a major complication of sepsis and is associated with high mortality and poor long-term prognosis. The purpose of this study is to develop interpretable machine learning models to predict the occurrence of SAE after ICU admission and implement the individual...
Autores principales: | Lu, Xiao, Kang, Hongyu, Zhou, Dawei, Li, Qin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805434/ https://www.ncbi.nlm.nih.gov/pubmed/36587113 http://dx.doi.org/10.1038/s41598-022-27134-6 |
Ejemplares similares
-
A Machine Learning Model for Accurate Prediction of Sepsis in ICU Patients
por: Wang, Dong, et al.
Publicado: (2021) -
MGP-AttTCN: An interpretable machine learning model for the prediction of sepsis
por: Rosnati, Margherita, et al.
Publicado: (2021) -
Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU
por: Kong, Guilan, et al.
Publicado: (2020) -
Early Prediction of Sepsis in the ICU Using Machine Learning: A Systematic Review
por: Moor, Michael, et al.
Publicado: (2021) -
Machine Learning for Early Prediction of Sepsis in Intensive Care Unit (ICU) Patients
por: Alanazi, Abdullah, et al.
Publicado: (2023)