Cargando…
Machine learning can aid in prediction of IDH mutation from H&E-stained histology slides in infiltrating gliomas
While Machine Learning (ML) models have been increasingly applied to a range of histopathology tasks, there has been little emphasis on characterizing these models and contrasting them with human experts. We present a detailed empirical analysis comparing expert neuropathologists and ML models at pr...
Autores principales: | Liechty, Benjamin, Xu, Zhuoran, Zhang, Zhilu, Slocum, Cheyanne, Bahadir, Cagla D., Sabuncu, Mert R., Pisapia, David J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805452/ https://www.ncbi.nlm.nih.gov/pubmed/36587030 http://dx.doi.org/10.1038/s41598-022-26170-6 |
Ejemplares similares
-
Metabolic Profiling of IDH Mutation and Malignant Progression in Infiltrating Glioma
por: Jalbert, Llewellyn E., et al.
Publicado: (2017) -
Towards a single-assay approach: a combined DNA/RNA sequencing panel eliminates diagnostic redundancy and detects clinically-relevant fusions in neuropathology
por: Slocum, Cheyanne C., et al.
Publicado: (2022) -
Comparative analysis of transcriptomic profile, histology, and IDH mutation for classification of gliomas
por: Tran, Paul M. H., et al.
Publicado: (2020) -
Increased Radiation-Associated T-Cell Infiltration in Recurrent IDH-Mutant Glioma
por: Makarevic, Anastasia, et al.
Publicado: (2020) -
Predicting prognosis and IDH mutation status for patients with lower-grade gliomas using whole slide images
por: Jiang, Shuai, et al.
Publicado: (2021)