Cargando…
Deep learning-derived cardiovascular age shares a genetic basis with other cardiac phenotypes
Artificial intelligence (AI)-based approaches can now use electrocardiograms (ECGs) to provide expert-level performance in detecting heart abnormalities and diagnosing disease. Additionally, patient age predicted from ECGs by AI models has shown great potential as a biomarker for cardiovascular age,...
Autores principales: | Libiseller-Egger, Julian, Phelan, Jody E., Attia, Zachi I., Benavente, Ernest Diez, Campino, Susana, Friedman, Paul A., Lopez-Jimenez, Francisco, Leon, David A., Clark, Taane G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805465/ https://www.ncbi.nlm.nih.gov/pubmed/36587059 http://dx.doi.org/10.1038/s41598-022-27254-z |
Ejemplares similares
-
Robust detection of point mutations involved in multidrug-resistant Mycobacterium tuberculosis in the presence of co-occurrent resistance markers
por: Libiseller-Egger, Julian, et al.
Publicado: (2020) -
TB-ML—a framework for comparing machine learning approaches to predict drug resistance of Mycobacterium tuberculosis
por: Libiseller-Egger, Julian, et al.
Publicado: (2023) -
Using deep learning to identify recent positive selection in malaria parasite sequence data
por: Deelder, Wouter, et al.
Publicado: (2021) -
Machine Learning Predicts Accurately Mycobacterium tuberculosis Drug Resistance From Whole Genome Sequencing Data
por: Deelder, Wouter, et al.
Publicado: (2019) -
Bayesian compositional regression with microbiome features via variational inference
por: Scott, Darren A. V., et al.
Publicado: (2023)