Cargando…
sAMPpred-GAT: prediction of antimicrobial peptide by graph attention network and predicted peptide structure
MOTIVATION: Antimicrobial peptides (AMPs) are essential components of therapeutic peptides for innate immunity. Researchers have developed several computational methods to predict the potential AMPs from many candidate peptides. With the development of artificial intelligent techniques, the protein...
Autores principales: | Yan, Ke, Lv, Hongwu, Guo, Yichen, Peng, Wei, Liu, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805557/ https://www.ncbi.nlm.nih.gov/pubmed/36342186 http://dx.doi.org/10.1093/bioinformatics/btac715 |
Ejemplares similares
-
CS-AMPPred: An Updated SVM Model for Antimicrobial Activity Prediction in Cysteine-Stabilized Peptides
por: Porto, William F., et al.
Publicado: (2012) -
Co-AMPpred for in silico-aided predictions of antimicrobial peptides by integrating composition-based features
por: Singh, Onkar, et al.
Publicado: (2021) -
LaGAT: link-aware graph attention network for drug–drug interaction prediction
por: Hong, Yue, et al.
Publicado: (2022) -
omicsGAT: Graph Attention Network for Cancer Subtype Analyses
por: Baul, Sudipto, et al.
Publicado: (2022) -
TemporalGAT: Attention-Based Dynamic Graph Representation Learning
por: Fathy, Ahmed, et al.
Publicado: (2020)