Cargando…
Integrating heterogeneous knowledge graphs into drug–drug interaction extraction from the literature
MOTIVATION: Most of the conventional deep neural network-based methods for drug–drug interaction (DDI) extraction consider only context information around drug mentions in the text. However, human experts use heterogeneous background knowledge about drugs to comprehend pharmaceutical papers and extr...
Autores principales: | Asada, Masaki, Miwa, Makoto, Sasaki, Yutaka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805562/ https://www.ncbi.nlm.nih.gov/pubmed/36416141 http://dx.doi.org/10.1093/bioinformatics/btac754 |
Ejemplares similares
-
Using drug descriptions and molecular structures for drug–drug interaction extraction from literature
por: Asada, Masaki, et al.
Publicado: (2020) -
Representing a Heterogeneous Pharmaceutical Knowledge-Graph with Textual Information
por: Asada, Masaki, et al.
Publicado: (2021) -
Enhancing drug–drug interaction prediction by three-way decision and knowledge graph embedding
por: Hao, Xinkun, et al.
Publicado: (2022) -
Drug-Drug Interaction Predictions via Knowledge Graph and Text Embedding: Instrument Validation Study
por: Wang, Meng, et al.
Publicado: (2021) -
Leveraging syntactic and semantic graph kernels to extract pharmacokinetic drug drug interactions from biomedical literature
por: Zhang, Yaoyun, et al.
Publicado: (2016)