Cargando…

varAmpliCNV: analyzing variance of amplicons to detect CNVs in targeted NGS data

MOTIVATION: Computational identification of copy number variants (CNVs) in sequencing data is a challenging task. Existing CNV-detection methods account for various sources of variation and perform different normalization strategies. However, their applicability and predictions are restricted to spe...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Ajay Anand, Loeys, Bart, Van De Beek, Gerarda, Peeters, Nils, Wuyts, Wim, Van Laer, Lut, Vandeweyer, Geert, Alaerts, Maaike
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805572/
https://www.ncbi.nlm.nih.gov/pubmed/36440912
http://dx.doi.org/10.1093/bioinformatics/btac756
Descripción
Sumario:MOTIVATION: Computational identification of copy number variants (CNVs) in sequencing data is a challenging task. Existing CNV-detection methods account for various sources of variation and perform different normalization strategies. However, their applicability and predictions are restricted to specific enrichment protocols. Here, we introduce a novel tool named varAmpliCNV, specifically designed for CNV-detection in amplicon-based targeted resequencing data (Haloplex™ enrichment protocol) in the absence of matched controls. VarAmpliCNV utilizes principal component analysis (PCA) and/or metric dimensional scaling (MDS) to control variances of amplicon associated read counts enabling effective detection of CNV signals. RESULTS: Performance of VarAmpliCNV was compared against three existing methods (ConVaDING, ONCOCNV and DECoN) on data of 167 samples run with an aortic aneurysm gene panel (n = 30), including 9 positive control samples. Additionally, we validated the performance on a large deafness gene panel (n = 145) run on 138 samples, containing 4 positive controls. VarAmpliCNV achieved higher sensitivity (100%) and specificity (99.78%) in comparison to competing methods. In addition, unsupervised clustering of CNV segments and visualization plots of amplicons spanning these regions are included as a downstream strategy to filter out false positives. AVAILABILITY AND IMPLEMENTATION: The tool is freely available through galaxy toolshed and at: https://hub.docker.com/r/cmgantwerpen/varamplicnv. Supplementary Data File S1: https://tinyurl.com/2yzswyhh; Supplementary Data File S2: https://tinyurl.com/ycyf2fb4. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.