Cargando…

AutoDeconJ: a GPU-accelerated ImageJ plugin for 3D light-field deconvolution with optimal iteration numbers predicting

MOTIVATION: Light-field microscopy (LFM) is a compact solution to high-speed 3D fluorescence imaging. Usually, we need to do 3D deconvolution to the captured raw data. Although there are deep neural network methods that can accelerate the reconstruction process, the model is not universally applicab...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Changqing, Gao, Yuhan, Zhou, You, Sun, Yaoqi, Yan, Chenggang, Yin, Haibing, Xiong, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805591/
https://www.ncbi.nlm.nih.gov/pubmed/36440906
http://dx.doi.org/10.1093/bioinformatics/btac760
_version_ 1784862360919343104
author Su, Changqing
Gao, Yuhan
Zhou, You
Sun, Yaoqi
Yan, Chenggang
Yin, Haibing
Xiong, Bo
author_facet Su, Changqing
Gao, Yuhan
Zhou, You
Sun, Yaoqi
Yan, Chenggang
Yin, Haibing
Xiong, Bo
author_sort Su, Changqing
collection PubMed
description MOTIVATION: Light-field microscopy (LFM) is a compact solution to high-speed 3D fluorescence imaging. Usually, we need to do 3D deconvolution to the captured raw data. Although there are deep neural network methods that can accelerate the reconstruction process, the model is not universally applicable for all system parameters. Here, we develop AutoDeconJ, a GPU-accelerated ImageJ plugin for 4.4× faster and more accurate deconvolution of LFM data. We further propose an image quality metric for the deconvolution process, aiding in automatically determining the optimal number of iterations with higher reconstruction accuracy and fewer artifacts. RESULTS: Our proposed method outperforms state-of-the-art light-field deconvolution methods in reconstruction time and optimal iteration numbers prediction capability. It shows better universality of different light-field point spread function (PSF) parameters than the deep learning method. The fast, accurate and general reconstruction performance for different PSF parameters suggests its potential for mass 3D reconstruction of LFM data. AVAILABILITY AND IMPLEMENTATION: The codes, the documentation and example data are available on an open source at: https://github.com/Onetism/AutoDeconJ.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-9805591
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-98055912023-01-03 AutoDeconJ: a GPU-accelerated ImageJ plugin for 3D light-field deconvolution with optimal iteration numbers predicting Su, Changqing Gao, Yuhan Zhou, You Sun, Yaoqi Yan, Chenggang Yin, Haibing Xiong, Bo Bioinformatics Original Paper MOTIVATION: Light-field microscopy (LFM) is a compact solution to high-speed 3D fluorescence imaging. Usually, we need to do 3D deconvolution to the captured raw data. Although there are deep neural network methods that can accelerate the reconstruction process, the model is not universally applicable for all system parameters. Here, we develop AutoDeconJ, a GPU-accelerated ImageJ plugin for 4.4× faster and more accurate deconvolution of LFM data. We further propose an image quality metric for the deconvolution process, aiding in automatically determining the optimal number of iterations with higher reconstruction accuracy and fewer artifacts. RESULTS: Our proposed method outperforms state-of-the-art light-field deconvolution methods in reconstruction time and optimal iteration numbers prediction capability. It shows better universality of different light-field point spread function (PSF) parameters than the deep learning method. The fast, accurate and general reconstruction performance for different PSF parameters suggests its potential for mass 3D reconstruction of LFM data. AVAILABILITY AND IMPLEMENTATION: The codes, the documentation and example data are available on an open source at: https://github.com/Onetism/AutoDeconJ.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2022-11-28 /pmc/articles/PMC9805591/ /pubmed/36440906 http://dx.doi.org/10.1093/bioinformatics/btac760 Text en © The Author(s) 2022. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Paper
Su, Changqing
Gao, Yuhan
Zhou, You
Sun, Yaoqi
Yan, Chenggang
Yin, Haibing
Xiong, Bo
AutoDeconJ: a GPU-accelerated ImageJ plugin for 3D light-field deconvolution with optimal iteration numbers predicting
title AutoDeconJ: a GPU-accelerated ImageJ plugin for 3D light-field deconvolution with optimal iteration numbers predicting
title_full AutoDeconJ: a GPU-accelerated ImageJ plugin for 3D light-field deconvolution with optimal iteration numbers predicting
title_fullStr AutoDeconJ: a GPU-accelerated ImageJ plugin for 3D light-field deconvolution with optimal iteration numbers predicting
title_full_unstemmed AutoDeconJ: a GPU-accelerated ImageJ plugin for 3D light-field deconvolution with optimal iteration numbers predicting
title_short AutoDeconJ: a GPU-accelerated ImageJ plugin for 3D light-field deconvolution with optimal iteration numbers predicting
title_sort autodeconj: a gpu-accelerated imagej plugin for 3d light-field deconvolution with optimal iteration numbers predicting
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805591/
https://www.ncbi.nlm.nih.gov/pubmed/36440906
http://dx.doi.org/10.1093/bioinformatics/btac760
work_keys_str_mv AT suchangqing autodeconjagpuacceleratedimagejpluginfor3dlightfielddeconvolutionwithoptimaliterationnumberspredicting
AT gaoyuhan autodeconjagpuacceleratedimagejpluginfor3dlightfielddeconvolutionwithoptimaliterationnumberspredicting
AT zhouyou autodeconjagpuacceleratedimagejpluginfor3dlightfielddeconvolutionwithoptimaliterationnumberspredicting
AT sunyaoqi autodeconjagpuacceleratedimagejpluginfor3dlightfielddeconvolutionwithoptimaliterationnumberspredicting
AT yanchenggang autodeconjagpuacceleratedimagejpluginfor3dlightfielddeconvolutionwithoptimaliterationnumberspredicting
AT yinhaibing autodeconjagpuacceleratedimagejpluginfor3dlightfielddeconvolutionwithoptimaliterationnumberspredicting
AT xiongbo autodeconjagpuacceleratedimagejpluginfor3dlightfielddeconvolutionwithoptimaliterationnumberspredicting