Cargando…
DeepRank-GNN: a graph neural network framework to learn patterns in protein–protein interfaces
MOTIVATION: Gaining structural insights into the protein–protein interactome is essential to understand biological phenomena and extract knowledge for rational drug design or protein engineering. We have previously developed DeepRank, a deep-learning framework to facilitate pattern learning from pro...
Autores principales: | Réau, Manon, Renaud, Nicolas, Xue, Li C, Bonvin, Alexandre M J J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805592/ https://www.ncbi.nlm.nih.gov/pubmed/36420989 http://dx.doi.org/10.1093/bioinformatics/btac759 |
Ejemplares similares
-
DeepRank: a deep learning framework for data mining 3D protein-protein interfaces
por: Renaud, Nicolas, et al.
Publicado: (2021) -
Graph Neural Network(GNN) Inference of FPGA
por: Fuad, Kazi Ahmed Asif
Publicado: (2019) -
Auto-GNN: Neural architecture search of graph neural networks
por: Zhou, Kaixiong, et al.
Publicado: (2022) -
scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses
por: Wang, Juexin, et al.
Publicado: (2021) -
Barriers for the performance of graph neural networks (GNN) in discrete random structures
por: Gamarnik, David
Publicado: (2023)