Cargando…
Deep learning-based recognition and segmentation of intracranial aneurysms under small sample size
The manual identification and segmentation of intracranial aneurysms (IAs) involved in the 3D reconstruction procedure are labor-intensive and prone to human errors. To meet the demands for routine clinical management and large cohort studies of IAs, fast and accurate patient-specific IA reconstruct...
Autores principales: | Zhu, Guangyu, Luo, Xueqi, Yang, Tingting, Cai, Li, Yeo, Joon Hock, Yan, Ge, Yang, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9806214/ https://www.ncbi.nlm.nih.gov/pubmed/36601346 http://dx.doi.org/10.3389/fphys.2022.1084202 |
Ejemplares similares
-
Deep Shape Features for Predicting Future Intracranial Aneurysm Growth
por: Bizjak, Žiga, et al.
Publicado: (2021) -
A benchmark study of convolutional neural networks in fully automatic segmentation of aortic root
por: Yang, Tingting, et al.
Publicado: (2023) -
A Highly Automated Computational Method for Modeling of Intracranial Aneurysm Hemodynamics
por: Seo, Jung-Hee, et al.
Publicado: (2018) -
Weakly Supervised Deep Learning for Tooth-Marked Tongue Recognition
por: Zhou, Jianguo, et al.
Publicado: (2022) -
A deep learning-based approach for rectus abdominis segmentation and distance measurement in ultrasonography
por: Wang, Fei, et al.
Publicado: (2023)