Cargando…
Design of field real-time target spraying system based on improved YOLOv5
Deep learning techniques have made great progress in the field of target detection in recent years, making it possible to accurately identify plants in complex environments in agricultural fields. This project combines deep learning algorithms with spraying technology to design a machine vision prec...
Autores principales: | Li, He, Guo, Changle, Yang, Zishang, Chai, Jiajun, Shi, Yunhui, Liu, Jiawei, Zhang, Kaifei, Liu, Daoqi, Xu, Yufei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9806276/ https://www.ncbi.nlm.nih.gov/pubmed/36600914 http://dx.doi.org/10.3389/fpls.2022.1072631 |
Ejemplares similares
-
TIA-YOLOv5: An improved YOLOv5 network for real-time detection of crop and weed in the field
por: Wang, Aichen, et al.
Publicado: (2022) -
Real-time determination of flowering period for field wheat based on improved YOLOv5s model
por: Song, Xubin, et al.
Publicado: (2023) -
An improved YOLOv5s model using feature concatenation with attention mechanism for real-time fruit detection and counting
por: Lawal, Olarewaju Mubashiru, et al.
Publicado: (2023) -
TBC-YOLOv7: a refined YOLOv7-based algorithm for tea bud grading detection
por: Wang, Siyang, et al.
Publicado: (2023) -
Tomato Pest Recognition Algorithm Based on Improved YOLOv4
por: Liu, Jun, et al.
Publicado: (2022)