Cargando…

Comparative analysis of intestinal microbiota composition and transcriptome in diploid and triploid Carassius auratus

Polyploidy and the microbiome are crucial factors in how a host organism responds to disease. However, little is known about how triploidization and microbiome affect the immune response and disease resistance in the fish host. Therefore, this study aims to identify the relationship between intestin...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Yidan, Wei, Ke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9806896/
https://www.ncbi.nlm.nih.gov/pubmed/36593453
http://dx.doi.org/10.1186/s12866-022-02709-5
Descripción
Sumario:Polyploidy and the microbiome are crucial factors in how a host organism responds to disease. However, little is known about how triploidization and microbiome affect the immune response and disease resistance in the fish host. Therefore, this study aims to identify the relationship between intestinal microbiota composition, transcriptome changes, and disease resistance in triploid Carassius auratus (3nCC). In China’s central Dongting lake water system, diploid (2nCC) and triploid Carassius auratus were collected, then 16S rRNA and mRNA sequencing were used to examine the microbes and gene expression in the intestines. 16S rRNA sequencing demonstrated that triploidization altered intestinal richness, as well as the diversity of commensal bacteria in 3nCC. In addition, the abundance of the genus Vibrio in 3nCC was increased compared to 2nCC (P < 0.05). Furthermore, differential expression analysis of 3nCC revealed profound up-regulation of 293 transcripts, while 324 were down-regulated. Several differentially expressed transcripts were related to the immune response pathway in 3nCC, including NLRP3, LY9, PNMA1, MR1, PELI1, NOTCH2, NFIL3, and NLRC4. Taken together, triploidization can alter bacteria composition and abundance, which can in turn result in changes in expression of genes. This study offers an opportunity for deciphering the molecular mechanism underlying disease resistance after triploidization. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12866-022-02709-5.