Cargando…
Feature-space selection with banded ridge regression
Encoding models provide a powerful framework to identify the information represented in brain recordings. In this framework, a stimulus representation is expressed within a feature space and is used in a regularized linear regression to predict brain activity. To account for a potential complementar...
Autores principales: | la Tour, Tom Dupré, Eickenberg, Michael, Nunez-Elizalde, Anwar O., Gallant, Jack L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807218/ https://www.ncbi.nlm.nih.gov/pubmed/36334814 http://dx.doi.org/10.1016/j.neuroimage.2022.119728 |
Ejemplares similares
-
The Cortical Representation of Language Timescales is Shared between Reading and Listening
por: Chen, Catherine, et al.
Publicado: (2023) -
Fractional ridge regression: a fast, interpretable reparameterization of ridge regression
por: Rokem, Ariel, et al.
Publicado: (2020) -
Ridge Regression in Prediction Problems: Automatic Choice of the Ridge Parameter
por: Cule, Erika, et al.
Publicado: (2013) -
Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions
por: Ogutu, Joseph O, et al.
Publicado: (2012) -
Non-linear auto-regressive models for cross-frequency coupling in neural time series
por: Dupré la Tour, Tom, et al.
Publicado: (2017)