Cargando…
Machine Learning for Predicting Intubations in Heart Failure Patients: the Challenge of the Right Approach
Autores principales: | Ghanta, Sai Nikhila, Gautam, Nitesh, Mehta, Jawahar L., Al’Aref, Subhi J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807425/ https://www.ncbi.nlm.nih.gov/pubmed/36593325 http://dx.doi.org/10.1007/s10557-022-07423-y |
Ejemplares similares
-
Artificial Intelligence, Wearables and Remote Monitoring for Heart Failure: Current and Future Applications
por: Gautam, Nitesh, et al.
Publicado: (2022) -
A Late Presentation of COVID-19 Vaccine-Induced Myocarditis
por: Gautam, Nitesh, et al.
Publicado: (2021) -
Application of deep neural networks for inferring pressure in polymeric acoustic transponders/sensors
por: Alaie, Seyedhamidreza, et al.
Publicado: (2023) -
Efficacy and safety of sodium-glucose cotransporter 2 inhibitors initiation in patients with acute heart failure, with and without type 2 diabetes: a systematic review and meta-analysis
por: Salah, Husam M., et al.
Publicado: (2022) -
HIGHER HDL CHOLESTEROL LEVELS DECREASE SUSCEPTIBILITY TO COVID-19 INFECTION
por: Chidambaram, Vignesh, et al.
Publicado: (2023)