Cargando…
In vivo labeling of endogenous genomic loci in C. elegans using CRISPR/dCas9
Visualization of genomic loci with open chromatin state has been reported in mammalian tissue culture cells using a CRISPR/Cas9-based system that utilizes an EGFP-tagged endonuclease-deficient Cas9 protein (dCas9::EGFP) (Chen et al. 2013). Here, we adapted this approach for use in Caenorhabditis ele...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Caltech Library
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807462/ https://www.ncbi.nlm.nih.gov/pubmed/36606081 http://dx.doi.org/10.17912/micropub.biology.000701 |
Sumario: | Visualization of genomic loci with open chromatin state has been reported in mammalian tissue culture cells using a CRISPR/Cas9-based system that utilizes an EGFP-tagged endonuclease-deficient Cas9 protein (dCas9::EGFP) (Chen et al. 2013). Here, we adapted this approach for use in Caenorhabditis elegans . We generated a C. elegans strain that expresses the dCas9 protein fused to two nuclear-localized EGFP molecules (dCas9::NLS::2xEGFP::NLS) in an inducible manner. Using this strain, we report the visualization in live C. elegans embryos of two endogenous repetitive loci, rrn-4 and rrn-1 , from which 5S and 18S ribosomal RNAs are constitutively generated. |
---|