Cargando…
A comparison of machine learning algorithms and traditional regression-based statistical modeling for predicting hypertension incidence in a Canadian population
Risk prediction models are frequently used to identify individuals at risk of developing hypertension. This study evaluates different machine learning algorithms and compares their predictive performance with the conventional Cox proportional hazards (PH) model to predict hypertension incidence usin...
Autores principales: | Chowdhury, Mohammad Ziaul Islam, Leung, Alexander A., Walker, Robin L., Sikdar, Khokan C., O’Beirne, Maeve, Quan, Hude, Turin, Tanvir C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807553/ https://www.ncbi.nlm.nih.gov/pubmed/36593280 http://dx.doi.org/10.1038/s41598-022-27264-x |
Ejemplares similares
-
Prediction of hypertension using traditional regression and machine learning models: A systematic review and meta-analysis
por: Chowdhury, Mohammad Ziaul Islam, et al.
Publicado: (2022) -
Development and validation of a hypertension risk prediction model and construction of a risk score in a Canadian population
por: Chowdhury, Mohammad Ziaul Islam, et al.
Publicado: (2022) -
Summarising and synthesising regression coefficients through systematic review and meta-analysis for improving hypertension prediction using metamodelling: protocol
por: Chowdhury, Mohammad Ziaul Islam, et al.
Publicado: (2020) -
Variable selection strategies and its importance in clinical prediction modelling
por: Chowdhury, Mohammad Ziaul Islam, et al.
Publicado: (2020) -
Predicting the risk of stroke among patients with type 2 diabetes: a systematic review and meta-analysis of C-statistics
por: Chowdhury, Mohammad Ziaul Islam, et al.
Publicado: (2019)