Cargando…
Combining convolutional neural networks and self-attention for fundus diseases identification
Early detection of lesions is of great significance for treating fundus diseases. Fundus photography is an effective and convenient screening technique by which common fundus diseases can be detected. In this study, we use color fundus images to distinguish among multiple fundus diseases. Existing r...
Autores principales: | Wang, Keya, Xu, Chuanyun, Li, Gang, Zhang, Yang, Zheng, Yu, Sun, Chengjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807560/ https://www.ncbi.nlm.nih.gov/pubmed/36593268 http://dx.doi.org/10.1038/s41598-022-27358-6 |
Ejemplares similares
-
Automated fundus ultrasound image classification based on siamese convolutional neural networks with multi-attention
por: Tan, Jiachen, et al.
Publicado: (2023) -
Automatic Multilabel Classification of Multiple Fundus Diseases Based on Convolutional Neural Network With Squeeze-and-Excitation Attention
por: Lu, Zhenzhen, et al.
Publicado: (2023) -
Attention-Based Convolutional Neural Network for Ingredients Identification
por: Chen, Shi, et al.
Publicado: (2023) -
Application of a deep convolutional neural network in the diagnosis of neonatal ocular fundus hemorrhage
por: Wang, Binbin, et al.
Publicado: (2018) -
Class-attention-based lesion proposal convolutional neural network for strawberry diseases identification
por: Hu, Xiaobo, et al.
Publicado: (2023)