Cargando…
Prediction of tide level based on variable weight combination of LightGBM and CNN-BiGRU model
Accurate tide level prediction is crucial to human activities in coastal areas. Many practical applications show that compared with traditional harmonic analysis, long short-term memory (LSTM), gated recurrent units (GRUs) and other neural networks, along with ensemble learning models, such as light...
Autores principales: | Su, Ye, Jiang, Xuchu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807633/ https://www.ncbi.nlm.nih.gov/pubmed/36593233 http://dx.doi.org/10.1038/s41598-022-26213-y |
Ejemplares similares
-
Energy consumption prediction using the GRU-MMattention-LightGBM model with features of Prophet decomposition
por: Liang, Shaokun, et al.
Publicado: (2023) -
Combination predicting model of traffic congestion index in weekdays based on LightGBM-GRU
por: Cheng, Wei, et al.
Publicado: (2022) -
CircPCBL: Identification of Plant CircRNAs with a CNN-BiGRU-GLT Model
por: Wu, Pengpeng, et al.
Publicado: (2023) -
Simulation of Nanopore Sequencing Signals Based on BiGRU
por: Chen, Weigang, et al.
Publicado: (2020) -
Prediction of soil moisture using BiGRU-LSTM model with STL decomposition in Qinghai–Tibet Plateau
por: Zhao, Lufei, et al.
Publicado: (2023)