Cargando…
Structural analysis of melanosomes in living mammalian cells using scanning electron-assisted dielectric microscopy with deep neural network
Melanins are the main pigments found in mammals. Their synthesis and transfer to keratinocytes have been widely investigated for many years. However, analysis has been mainly carried out using fixed rather than live cells. In this study, we have analysed the melanosomes in living mammalian cells usi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807747/ https://www.ncbi.nlm.nih.gov/pubmed/36618988 http://dx.doi.org/10.1016/j.csbj.2022.12.027 |
_version_ | 1784862779409170432 |
---|---|
author | Okada, Tomoko Iwayama, Tomoaki Ogura, Taku Murakami, Shinya Ogura, Toshihiko |
author_facet | Okada, Tomoko Iwayama, Tomoaki Ogura, Taku Murakami, Shinya Ogura, Toshihiko |
author_sort | Okada, Tomoko |
collection | PubMed |
description | Melanins are the main pigments found in mammals. Their synthesis and transfer to keratinocytes have been widely investigated for many years. However, analysis has been mainly carried out using fixed rather than live cells. In this study, we have analysed the melanosomes in living mammalian cells using newly developed scanning electron-assisted dielectric microscopy (SE-ADM). The melanosomes in human melanoma MNT-1 cells were observed as clear black particles in SE-ADM. The main structure of melanosomes was toroidal while that of normal melanocytes was ellipsoidal. In tyrosinase knockout MNT-1 cells, not only the black particles in the SE-ADM images but also the Raman shift of melanin peaks completely disappeared suggesting that the black particles were really melanosomes. We developed a deep neural network (DNN) system to automatically detect melanosomes in cells and analysed their diameter and roundness. In terms of melanosome morphology, the diameter of melanosomes in melanoma cells did not change while that in normal melanocytes increased during culture. The established DNN analysis system with SE-ADM can be used for other particles, e.g. exosomes, lysosomes, and other biological particles. |
format | Online Article Text |
id | pubmed-9807747 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Research Network of Computational and Structural Biotechnology |
record_format | MEDLINE/PubMed |
spelling | pubmed-98077472023-01-05 Structural analysis of melanosomes in living mammalian cells using scanning electron-assisted dielectric microscopy with deep neural network Okada, Tomoko Iwayama, Tomoaki Ogura, Taku Murakami, Shinya Ogura, Toshihiko Comput Struct Biotechnol J Research Article Melanins are the main pigments found in mammals. Their synthesis and transfer to keratinocytes have been widely investigated for many years. However, analysis has been mainly carried out using fixed rather than live cells. In this study, we have analysed the melanosomes in living mammalian cells using newly developed scanning electron-assisted dielectric microscopy (SE-ADM). The melanosomes in human melanoma MNT-1 cells were observed as clear black particles in SE-ADM. The main structure of melanosomes was toroidal while that of normal melanocytes was ellipsoidal. In tyrosinase knockout MNT-1 cells, not only the black particles in the SE-ADM images but also the Raman shift of melanin peaks completely disappeared suggesting that the black particles were really melanosomes. We developed a deep neural network (DNN) system to automatically detect melanosomes in cells and analysed their diameter and roundness. In terms of melanosome morphology, the diameter of melanosomes in melanoma cells did not change while that in normal melanocytes increased during culture. The established DNN analysis system with SE-ADM can be used for other particles, e.g. exosomes, lysosomes, and other biological particles. Research Network of Computational and Structural Biotechnology 2022-12-18 /pmc/articles/PMC9807747/ /pubmed/36618988 http://dx.doi.org/10.1016/j.csbj.2022.12.027 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Okada, Tomoko Iwayama, Tomoaki Ogura, Taku Murakami, Shinya Ogura, Toshihiko Structural analysis of melanosomes in living mammalian cells using scanning electron-assisted dielectric microscopy with deep neural network |
title | Structural analysis of melanosomes in living mammalian cells using scanning electron-assisted dielectric microscopy with deep neural network |
title_full | Structural analysis of melanosomes in living mammalian cells using scanning electron-assisted dielectric microscopy with deep neural network |
title_fullStr | Structural analysis of melanosomes in living mammalian cells using scanning electron-assisted dielectric microscopy with deep neural network |
title_full_unstemmed | Structural analysis of melanosomes in living mammalian cells using scanning electron-assisted dielectric microscopy with deep neural network |
title_short | Structural analysis of melanosomes in living mammalian cells using scanning electron-assisted dielectric microscopy with deep neural network |
title_sort | structural analysis of melanosomes in living mammalian cells using scanning electron-assisted dielectric microscopy with deep neural network |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807747/ https://www.ncbi.nlm.nih.gov/pubmed/36618988 http://dx.doi.org/10.1016/j.csbj.2022.12.027 |
work_keys_str_mv | AT okadatomoko structuralanalysisofmelanosomesinlivingmammaliancellsusingscanningelectronassisteddielectricmicroscopywithdeepneuralnetwork AT iwayamatomoaki structuralanalysisofmelanosomesinlivingmammaliancellsusingscanningelectronassisteddielectricmicroscopywithdeepneuralnetwork AT ogurataku structuralanalysisofmelanosomesinlivingmammaliancellsusingscanningelectronassisteddielectricmicroscopywithdeepneuralnetwork AT murakamishinya structuralanalysisofmelanosomesinlivingmammaliancellsusingscanningelectronassisteddielectricmicroscopywithdeepneuralnetwork AT oguratoshihiko structuralanalysisofmelanosomesinlivingmammaliancellsusingscanningelectronassisteddielectricmicroscopywithdeepneuralnetwork |