Cargando…
Synthesis of T2-weighted images from proton density images using a generative adversarial network in a temporomandibular joint magnetic resonance imaging protocol
PURPOSE: This study proposed a generative adversarial network (GAN) model for T2-weighted image (WI) synthesis from proton density (PD)-WI in a temporomandibular joint (TMJ) magnetic resonance imaging (MRI) protocol. MATERIALS AND METHODS: From January to November 2019, MRI scans for TMJ were review...
Autores principales: | Lee, Chena, Ha, Eun-Gyu, Choi, Yoon Joo, Jeon, Kug Jin, Han, Sang-Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Academy of Oral and Maxillofacial Radiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807788/ https://www.ncbi.nlm.nih.gov/pubmed/36605858 http://dx.doi.org/10.5624/isd.20220125 |
Ejemplares similares
-
Computed tomography and magnetic resonance imaging characteristics of giant cell tumors in the temporomandibular joint complex
por: Choi, Yoon Joo, et al.
Publicado: (2021) -
Using deep learning to predict temporomandibular joint disc perforation based on magnetic resonance imaging
por: Kim, Jae-Young, et al.
Publicado: (2021) -
Imaging of the Temporomandibular Joint
por: Gharavi, Seyed Mohammad, et al.
Publicado: (2022) -
Generative adversarial networks with adaptive normalization for synthesizing T2-weighted magnetic resonance images from diffusion-weighted images
por: Mao, Yanyan, et al.
Publicado: (2022) -
Deep learning-based fully automatic segmentation of the maxillary sinus on cone-beam computed tomographic images
por: Choi, Hanseung, et al.
Publicado: (2022)