Cargando…
A curated dataset for hate speech detection on social media text
Social media platforms have become the most prominent medium for spreading hate speech, primarily through hateful textual content. An extensive dataset containing emoticons, emojis, hashtags, slang, and contractions is required to detect hate speech on social media based on current trends. Therefore...
Autores principales: | Mody, Devansh, Huang, YiDong, Alves de Oliveira, Thiago Eustaquio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807815/ https://www.ncbi.nlm.nih.gov/pubmed/36605500 http://dx.doi.org/10.1016/j.dib.2022.108832 |
Ejemplares similares
-
The Datafication of Hate: Expectations and Challenges in Automated Hate Speech Monitoring
por: Laaksonen, Salla-Maaria, et al.
Publicado: (2020) -
Moralized language predicts hate speech on social media
por: Solovev, Kirill, et al.
Publicado: (2022) -
Hate speech and abusive language detection in Indonesian social media: Progress and challenges
por: Ibrohim, Muhammad Okky, et al.
Publicado: (2023) -
Hate speech detection and racial bias mitigation in social media based on BERT model
por: Mozafari, Marzieh, et al.
Publicado: (2020) -
Medical dataset classification for Kurdish short text over social media
por: Saeed, Ari M., et al.
Publicado: (2022)