Cargando…
Implementation of a graph-embedded topic model for analysis of population-level electronic health records
To address the need for systematic investigation of the phenome enabled by ever-growing genotype and phenotype data, we describe our step-by-step software implementation of a graph-embedded topic model, including data preprocessing, graph learning, topic inference, and phenotype prediction. As a dem...
Autores principales: | Wang, Yuening, Grant, Audrey V., Li, Yue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807818/ https://www.ncbi.nlm.nih.gov/pubmed/36583962 http://dx.doi.org/10.1016/j.xpro.2022.101966 |
Ejemplares similares
-
A graph-embedded topic model enables characterization of diverse pain phenotypes among UK biobank individuals
por: Wang, Yuening, et al.
Publicado: (2022) -
Modeling electronic health record data using an end-to-end knowledge-graph-informed topic model
por: Zou, Yuesong, et al.
Publicado: (2022) -
Inferring multimodal latent topics from electronic health records
por: Li, Yue, et al.
Publicado: (2020) -
Ensembles of knowledge graph embedding models improve predictions for drug discovery
por: Rivas-Barragan, Daniel, et al.
Publicado: (2022) -
Clinical Implementation of Predictive Models Embedded within Electronic Health Record Systems: A Systematic Review
por: Lee, Terrence C., et al.
Publicado: (2020)