Cargando…

Cynomolgus Macaque Model for COVID-19 Delta Variant

With the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, which are randomly mutated, the dominant strains in regions are changing globally. The development of preclinical animal models is imperative to validate vaccines and therapeutics against SARS-CoV-2 variants. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Baek, Seung Ho, Oh, Hanseul, Koo, Bon-Sang, Kim, Green, Hwang, Eun-Ha, Jung, Hoyin, An, You Jung, Park, Jae-Hak, Hong, Jung Joo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Association of Immunologists 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807958/
https://www.ncbi.nlm.nih.gov/pubmed/36627939
http://dx.doi.org/10.4110/in.2022.22.e48
Descripción
Sumario:With the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, which are randomly mutated, the dominant strains in regions are changing globally. The development of preclinical animal models is imperative to validate vaccines and therapeutics against SARS-CoV-2 variants. The objective of this study was to develop a non-human primate (NHP) model for SARS-CoV-2 Delta variant infection. Cynomolgus macaques infected with Delta variants showed infectious viruses and viral RNA in the upper (nasal and throat) and lower respiratory (lung) tracts during the acute phase of infection. After 3 days of infection, lesions consistent with diffuse alveolar damage were observed in the lungs. For cellular immune responses, all macaques displayed transient lymphopenia and neutrophilia in the early stages of infection. SARS-CoV-2 Delta variant spike protein-specific IgM, IgG, and IgA levels were significantly increased in the plasma of these animals 14 days after infection. This new NHP Delta variant infection model can be used for comparative analysis of the difference in severity between SARS-CoV-2 variants of concern and may be useful in the efficacy evaluation of vaccines and universal therapeutic drugs for mutations.