Cargando…
Can AI predict epithelial lesion categories via automated analysis of cervical biopsies: The TissueNet challenge?
The French Society of Pathology (SFP) organized its first data challenge in 2020 with the help of the Health Data Hub (HDH). The organization of this event first consisted of recruiting nearly 5000 cervical biopsy slides obtained from 20 pathology centers. After ensuring that patients did not refuse...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9808029/ https://www.ncbi.nlm.nih.gov/pubmed/36605109 http://dx.doi.org/10.1016/j.jpi.2022.100149 |
_version_ | 1784862844694560768 |
---|---|
author | Loménie, Nicolas Bertrand, Capucine Fick, Rutger H.J. Ben Hadj, Saima Tayart, Brice Tilmant, Cyprien Farré, Isabelle Azdad, Soufiane Z. Dahmani, Samy Dequen, Gilles Feng, Ming Xu, Kele Li, Zimu Prevot, Sophie Bergeron, Christine Bataillon, Guillaume Devouassoux-Shisheboran, Mojgan Glaser, Claire Delaune, Agathe Valmary-Degano, Séverine Bertheau, Philippe |
author_facet | Loménie, Nicolas Bertrand, Capucine Fick, Rutger H.J. Ben Hadj, Saima Tayart, Brice Tilmant, Cyprien Farré, Isabelle Azdad, Soufiane Z. Dahmani, Samy Dequen, Gilles Feng, Ming Xu, Kele Li, Zimu Prevot, Sophie Bergeron, Christine Bataillon, Guillaume Devouassoux-Shisheboran, Mojgan Glaser, Claire Delaune, Agathe Valmary-Degano, Séverine Bertheau, Philippe |
author_sort | Loménie, Nicolas |
collection | PubMed |
description | The French Society of Pathology (SFP) organized its first data challenge in 2020 with the help of the Health Data Hub (HDH). The organization of this event first consisted of recruiting nearly 5000 cervical biopsy slides obtained from 20 pathology centers. After ensuring that patients did not refuse to include their slides in the project, the slides were anonymized, digitized, and annotated by expert pathologists, and finally uploaded to a data challenge platform for competitors from around the world. Competing teams had to develop algorithms that could distinguish 4 diagnostic classes in cervical epithelial lesions. Among the many submissions from competitors, the best algorithms achieved an overall score close to 95%. The final part of the competition lasted only 6 weeks, and the goal of SFP and HDH is now to allow for the collection to be published in open access for the scientific community. In this report, we have performed a “post-competition analysis” of the results. We first described the algorithmic pipelines of 3 top competitors. We then analyzed several difficult cases that even the top competitors could not predict correctly. A medical committee of several expert pathologists looked for possible explanations for these erroneous results by reviewing the images, and we present their findings here targeted for a large audience of pathologists and data scientists in the field of digital pathology. |
format | Online Article Text |
id | pubmed-9808029 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-98080292023-01-04 Can AI predict epithelial lesion categories via automated analysis of cervical biopsies: The TissueNet challenge? Loménie, Nicolas Bertrand, Capucine Fick, Rutger H.J. Ben Hadj, Saima Tayart, Brice Tilmant, Cyprien Farré, Isabelle Azdad, Soufiane Z. Dahmani, Samy Dequen, Gilles Feng, Ming Xu, Kele Li, Zimu Prevot, Sophie Bergeron, Christine Bataillon, Guillaume Devouassoux-Shisheboran, Mojgan Glaser, Claire Delaune, Agathe Valmary-Degano, Séverine Bertheau, Philippe J Pathol Inform Original Research Article The French Society of Pathology (SFP) organized its first data challenge in 2020 with the help of the Health Data Hub (HDH). The organization of this event first consisted of recruiting nearly 5000 cervical biopsy slides obtained from 20 pathology centers. After ensuring that patients did not refuse to include their slides in the project, the slides were anonymized, digitized, and annotated by expert pathologists, and finally uploaded to a data challenge platform for competitors from around the world. Competing teams had to develop algorithms that could distinguish 4 diagnostic classes in cervical epithelial lesions. Among the many submissions from competitors, the best algorithms achieved an overall score close to 95%. The final part of the competition lasted only 6 weeks, and the goal of SFP and HDH is now to allow for the collection to be published in open access for the scientific community. In this report, we have performed a “post-competition analysis” of the results. We first described the algorithmic pipelines of 3 top competitors. We then analyzed several difficult cases that even the top competitors could not predict correctly. A medical committee of several expert pathologists looked for possible explanations for these erroneous results by reviewing the images, and we present their findings here targeted for a large audience of pathologists and data scientists in the field of digital pathology. Elsevier 2022-10-05 /pmc/articles/PMC9808029/ /pubmed/36605109 http://dx.doi.org/10.1016/j.jpi.2022.100149 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Research Article Loménie, Nicolas Bertrand, Capucine Fick, Rutger H.J. Ben Hadj, Saima Tayart, Brice Tilmant, Cyprien Farré, Isabelle Azdad, Soufiane Z. Dahmani, Samy Dequen, Gilles Feng, Ming Xu, Kele Li, Zimu Prevot, Sophie Bergeron, Christine Bataillon, Guillaume Devouassoux-Shisheboran, Mojgan Glaser, Claire Delaune, Agathe Valmary-Degano, Séverine Bertheau, Philippe Can AI predict epithelial lesion categories via automated analysis of cervical biopsies: The TissueNet challenge? |
title | Can AI predict epithelial lesion categories via automated analysis of cervical biopsies: The TissueNet challenge? |
title_full | Can AI predict epithelial lesion categories via automated analysis of cervical biopsies: The TissueNet challenge? |
title_fullStr | Can AI predict epithelial lesion categories via automated analysis of cervical biopsies: The TissueNet challenge? |
title_full_unstemmed | Can AI predict epithelial lesion categories via automated analysis of cervical biopsies: The TissueNet challenge? |
title_short | Can AI predict epithelial lesion categories via automated analysis of cervical biopsies: The TissueNet challenge? |
title_sort | can ai predict epithelial lesion categories via automated analysis of cervical biopsies: the tissuenet challenge? |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9808029/ https://www.ncbi.nlm.nih.gov/pubmed/36605109 http://dx.doi.org/10.1016/j.jpi.2022.100149 |
work_keys_str_mv | AT lomenienicolas canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge AT bertrandcapucine canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge AT fickrutgerhj canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge AT benhadjsaima canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge AT tayartbrice canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge AT tilmantcyprien canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge AT farreisabelle canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge AT azdadsoufianez canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge AT dahmanisamy canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge AT dequengilles canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge AT fengming canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge AT xukele canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge AT lizimu canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge AT prevotsophie canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge AT bergeronchristine canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge AT bataillonguillaume canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge AT devouassouxshisheboranmojgan canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge AT glaserclaire canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge AT delauneagathe canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge AT valmarydeganoseverine canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge AT bertheauphilippe canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge |