Cargando…

Can AI predict epithelial lesion categories via automated analysis of cervical biopsies: The TissueNet challenge?

The French Society of Pathology (SFP) organized its first data challenge in 2020 with the help of the Health Data Hub (HDH). The organization of this event first consisted of recruiting nearly 5000 cervical biopsy slides obtained from 20 pathology centers. After ensuring that patients did not refuse...

Descripción completa

Detalles Bibliográficos
Autores principales: Loménie, Nicolas, Bertrand, Capucine, Fick, Rutger H.J., Ben Hadj, Saima, Tayart, Brice, Tilmant, Cyprien, Farré, Isabelle, Azdad, Soufiane Z., Dahmani, Samy, Dequen, Gilles, Feng, Ming, Xu, Kele, Li, Zimu, Prevot, Sophie, Bergeron, Christine, Bataillon, Guillaume, Devouassoux-Shisheboran, Mojgan, Glaser, Claire, Delaune, Agathe, Valmary-Degano, Séverine, Bertheau, Philippe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9808029/
https://www.ncbi.nlm.nih.gov/pubmed/36605109
http://dx.doi.org/10.1016/j.jpi.2022.100149
_version_ 1784862844694560768
author Loménie, Nicolas
Bertrand, Capucine
Fick, Rutger H.J.
Ben Hadj, Saima
Tayart, Brice
Tilmant, Cyprien
Farré, Isabelle
Azdad, Soufiane Z.
Dahmani, Samy
Dequen, Gilles
Feng, Ming
Xu, Kele
Li, Zimu
Prevot, Sophie
Bergeron, Christine
Bataillon, Guillaume
Devouassoux-Shisheboran, Mojgan
Glaser, Claire
Delaune, Agathe
Valmary-Degano, Séverine
Bertheau, Philippe
author_facet Loménie, Nicolas
Bertrand, Capucine
Fick, Rutger H.J.
Ben Hadj, Saima
Tayart, Brice
Tilmant, Cyprien
Farré, Isabelle
Azdad, Soufiane Z.
Dahmani, Samy
Dequen, Gilles
Feng, Ming
Xu, Kele
Li, Zimu
Prevot, Sophie
Bergeron, Christine
Bataillon, Guillaume
Devouassoux-Shisheboran, Mojgan
Glaser, Claire
Delaune, Agathe
Valmary-Degano, Séverine
Bertheau, Philippe
author_sort Loménie, Nicolas
collection PubMed
description The French Society of Pathology (SFP) organized its first data challenge in 2020 with the help of the Health Data Hub (HDH). The organization of this event first consisted of recruiting nearly 5000 cervical biopsy slides obtained from 20 pathology centers. After ensuring that patients did not refuse to include their slides in the project, the slides were anonymized, digitized, and annotated by expert pathologists, and finally uploaded to a data challenge platform for competitors from around the world. Competing teams had to develop algorithms that could distinguish 4 diagnostic classes in cervical epithelial lesions. Among the many submissions from competitors, the best algorithms achieved an overall score close to 95%. The final part of the competition lasted only 6 weeks, and the goal of SFP and HDH is now to allow for the collection to be published in open access for the scientific community. In this report, we have performed a “post-competition analysis” of the results. We first described the algorithmic pipelines of 3 top competitors. We then analyzed several difficult cases that even the top competitors could not predict correctly. A medical committee of several expert pathologists looked for possible explanations for these erroneous results by reviewing the images, and we present their findings here targeted for a large audience of pathologists and data scientists in the field of digital pathology.
format Online
Article
Text
id pubmed-9808029
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-98080292023-01-04 Can AI predict epithelial lesion categories via automated analysis of cervical biopsies: The TissueNet challenge? Loménie, Nicolas Bertrand, Capucine Fick, Rutger H.J. Ben Hadj, Saima Tayart, Brice Tilmant, Cyprien Farré, Isabelle Azdad, Soufiane Z. Dahmani, Samy Dequen, Gilles Feng, Ming Xu, Kele Li, Zimu Prevot, Sophie Bergeron, Christine Bataillon, Guillaume Devouassoux-Shisheboran, Mojgan Glaser, Claire Delaune, Agathe Valmary-Degano, Séverine Bertheau, Philippe J Pathol Inform Original Research Article The French Society of Pathology (SFP) organized its first data challenge in 2020 with the help of the Health Data Hub (HDH). The organization of this event first consisted of recruiting nearly 5000 cervical biopsy slides obtained from 20 pathology centers. After ensuring that patients did not refuse to include their slides in the project, the slides were anonymized, digitized, and annotated by expert pathologists, and finally uploaded to a data challenge platform for competitors from around the world. Competing teams had to develop algorithms that could distinguish 4 diagnostic classes in cervical epithelial lesions. Among the many submissions from competitors, the best algorithms achieved an overall score close to 95%. The final part of the competition lasted only 6 weeks, and the goal of SFP and HDH is now to allow for the collection to be published in open access for the scientific community. In this report, we have performed a “post-competition analysis” of the results. We first described the algorithmic pipelines of 3 top competitors. We then analyzed several difficult cases that even the top competitors could not predict correctly. A medical committee of several expert pathologists looked for possible explanations for these erroneous results by reviewing the images, and we present their findings here targeted for a large audience of pathologists and data scientists in the field of digital pathology. Elsevier 2022-10-05 /pmc/articles/PMC9808029/ /pubmed/36605109 http://dx.doi.org/10.1016/j.jpi.2022.100149 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Research Article
Loménie, Nicolas
Bertrand, Capucine
Fick, Rutger H.J.
Ben Hadj, Saima
Tayart, Brice
Tilmant, Cyprien
Farré, Isabelle
Azdad, Soufiane Z.
Dahmani, Samy
Dequen, Gilles
Feng, Ming
Xu, Kele
Li, Zimu
Prevot, Sophie
Bergeron, Christine
Bataillon, Guillaume
Devouassoux-Shisheboran, Mojgan
Glaser, Claire
Delaune, Agathe
Valmary-Degano, Séverine
Bertheau, Philippe
Can AI predict epithelial lesion categories via automated analysis of cervical biopsies: The TissueNet challenge?
title Can AI predict epithelial lesion categories via automated analysis of cervical biopsies: The TissueNet challenge?
title_full Can AI predict epithelial lesion categories via automated analysis of cervical biopsies: The TissueNet challenge?
title_fullStr Can AI predict epithelial lesion categories via automated analysis of cervical biopsies: The TissueNet challenge?
title_full_unstemmed Can AI predict epithelial lesion categories via automated analysis of cervical biopsies: The TissueNet challenge?
title_short Can AI predict epithelial lesion categories via automated analysis of cervical biopsies: The TissueNet challenge?
title_sort can ai predict epithelial lesion categories via automated analysis of cervical biopsies: the tissuenet challenge?
topic Original Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9808029/
https://www.ncbi.nlm.nih.gov/pubmed/36605109
http://dx.doi.org/10.1016/j.jpi.2022.100149
work_keys_str_mv AT lomenienicolas canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge
AT bertrandcapucine canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge
AT fickrutgerhj canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge
AT benhadjsaima canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge
AT tayartbrice canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge
AT tilmantcyprien canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge
AT farreisabelle canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge
AT azdadsoufianez canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge
AT dahmanisamy canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge
AT dequengilles canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge
AT fengming canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge
AT xukele canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge
AT lizimu canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge
AT prevotsophie canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge
AT bergeronchristine canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge
AT bataillonguillaume canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge
AT devouassouxshisheboranmojgan canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge
AT glaserclaire canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge
AT delauneagathe canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge
AT valmarydeganoseverine canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge
AT bertheauphilippe canaipredictepitheliallesioncategoriesviaautomatedanalysisofcervicalbiopsiesthetissuenetchallenge