Cargando…
Phenotypic Correction of Murine Mucopolysaccharidosis Type II by Engraftment of Ex Vivo Lentiviral Vector-Transduced Hematopoietic Stem and Progenitor Cells
Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is an X-linked recessive lysosomal disease caused by deficiency of iduronate-2-sulfatase (IDS). The absence of IDS results in the accumulation of the glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate. Currently, the only approved t...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc., publishers
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9808798/ https://www.ncbi.nlm.nih.gov/pubmed/36226412 http://dx.doi.org/10.1089/hum.2022.141 |
_version_ | 1784863007814189056 |
---|---|
author | Smith, Miles C. Belur, Lalitha R. Karlen, Andrea D. Erlanson, Olivia Podetz-Pedersen, Kelly M. McKenzie, Jessica Detellis, Jenn Gagnidze, Khatuna Parsons, Geoffrey Robinson, Nicholas Labarre, Shelby Shah, Saumil Furcich, Justin Lund, Troy C. Tsai, Hsing-Chen McIvor, R. Scott Bonner, Melissa |
author_facet | Smith, Miles C. Belur, Lalitha R. Karlen, Andrea D. Erlanson, Olivia Podetz-Pedersen, Kelly M. McKenzie, Jessica Detellis, Jenn Gagnidze, Khatuna Parsons, Geoffrey Robinson, Nicholas Labarre, Shelby Shah, Saumil Furcich, Justin Lund, Troy C. Tsai, Hsing-Chen McIvor, R. Scott Bonner, Melissa |
author_sort | Smith, Miles C. |
collection | PubMed |
description | Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is an X-linked recessive lysosomal disease caused by deficiency of iduronate-2-sulfatase (IDS). The absence of IDS results in the accumulation of the glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate. Currently, the only approved treatment option for MPS II is enzyme replacement therapy (ERT), Elaprase. However, ERT is demanding for the patient and does not ameliorate neurological manifestations of the disease. Using an IDS-deficient mouse model that phenocopies the human disease, we evaluated hematopoietic stem and progenitor cells (HSPCs) transduced with a lentiviral vector (LVV) carrying a codon-optimized human IDS coding sequence regulated by a ubiquitous MNDU3 promoter (MNDU3-IDS). Mice treated with MNDU3-IDS LVV-transduced cells showed supraphysiological levels of IDS enzyme activity in plasma, peripheral blood mononuclear cells, and in most analyzed tissues. These enzyme levels were sufficient to normalize GAG storage in analyzed tissues. Importantly, IDS levels in the brains of MNDU3-IDS-engrafted animals were restored to 10–20% than that of wild-type mice, sufficient to normalize GAG content and prevent emergence of cognitive deficit as evaluated by neurobehavioral testing. These results demonstrate the potential effectiveness of ex vivo MNDU3-IDS LVV-transduced HSPCs for treatment of MPS II. |
format | Online Article Text |
id | pubmed-9808798 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Mary Ann Liebert, Inc., publishers |
record_format | MEDLINE/PubMed |
spelling | pubmed-98087982023-01-11 Phenotypic Correction of Murine Mucopolysaccharidosis Type II by Engraftment of Ex Vivo Lentiviral Vector-Transduced Hematopoietic Stem and Progenitor Cells Smith, Miles C. Belur, Lalitha R. Karlen, Andrea D. Erlanson, Olivia Podetz-Pedersen, Kelly M. McKenzie, Jessica Detellis, Jenn Gagnidze, Khatuna Parsons, Geoffrey Robinson, Nicholas Labarre, Shelby Shah, Saumil Furcich, Justin Lund, Troy C. Tsai, Hsing-Chen McIvor, R. Scott Bonner, Melissa Hum Gene Ther Research Articles Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is an X-linked recessive lysosomal disease caused by deficiency of iduronate-2-sulfatase (IDS). The absence of IDS results in the accumulation of the glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate. Currently, the only approved treatment option for MPS II is enzyme replacement therapy (ERT), Elaprase. However, ERT is demanding for the patient and does not ameliorate neurological manifestations of the disease. Using an IDS-deficient mouse model that phenocopies the human disease, we evaluated hematopoietic stem and progenitor cells (HSPCs) transduced with a lentiviral vector (LVV) carrying a codon-optimized human IDS coding sequence regulated by a ubiquitous MNDU3 promoter (MNDU3-IDS). Mice treated with MNDU3-IDS LVV-transduced cells showed supraphysiological levels of IDS enzyme activity in plasma, peripheral blood mononuclear cells, and in most analyzed tissues. These enzyme levels were sufficient to normalize GAG storage in analyzed tissues. Importantly, IDS levels in the brains of MNDU3-IDS-engrafted animals were restored to 10–20% than that of wild-type mice, sufficient to normalize GAG content and prevent emergence of cognitive deficit as evaluated by neurobehavioral testing. These results demonstrate the potential effectiveness of ex vivo MNDU3-IDS LVV-transduced HSPCs for treatment of MPS II. Mary Ann Liebert, Inc., publishers 2022-12-01 2022-12-14 /pmc/articles/PMC9808798/ /pubmed/36226412 http://dx.doi.org/10.1089/hum.2022.141 Text en © Miles C. Smith et al., 2022. Published by Mary Ann Liebert, Inc. https://creativecommons.org/licenses/by-nc/4.0/This Open Access article is distributed under the terms of the Creative Commons Attribution Noncommercial License [CC-BY-NC] (http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are cited. |
spellingShingle | Research Articles Smith, Miles C. Belur, Lalitha R. Karlen, Andrea D. Erlanson, Olivia Podetz-Pedersen, Kelly M. McKenzie, Jessica Detellis, Jenn Gagnidze, Khatuna Parsons, Geoffrey Robinson, Nicholas Labarre, Shelby Shah, Saumil Furcich, Justin Lund, Troy C. Tsai, Hsing-Chen McIvor, R. Scott Bonner, Melissa Phenotypic Correction of Murine Mucopolysaccharidosis Type II by Engraftment of Ex Vivo Lentiviral Vector-Transduced Hematopoietic Stem and Progenitor Cells |
title | Phenotypic Correction of Murine Mucopolysaccharidosis Type II by Engraftment of Ex Vivo Lentiviral Vector-Transduced Hematopoietic Stem and Progenitor Cells |
title_full | Phenotypic Correction of Murine Mucopolysaccharidosis Type II by Engraftment of Ex Vivo Lentiviral Vector-Transduced Hematopoietic Stem and Progenitor Cells |
title_fullStr | Phenotypic Correction of Murine Mucopolysaccharidosis Type II by Engraftment of Ex Vivo Lentiviral Vector-Transduced Hematopoietic Stem and Progenitor Cells |
title_full_unstemmed | Phenotypic Correction of Murine Mucopolysaccharidosis Type II by Engraftment of Ex Vivo Lentiviral Vector-Transduced Hematopoietic Stem and Progenitor Cells |
title_short | Phenotypic Correction of Murine Mucopolysaccharidosis Type II by Engraftment of Ex Vivo Lentiviral Vector-Transduced Hematopoietic Stem and Progenitor Cells |
title_sort | phenotypic correction of murine mucopolysaccharidosis type ii by engraftment of ex vivo lentiviral vector-transduced hematopoietic stem and progenitor cells |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9808798/ https://www.ncbi.nlm.nih.gov/pubmed/36226412 http://dx.doi.org/10.1089/hum.2022.141 |
work_keys_str_mv | AT smithmilesc phenotypiccorrectionofmurinemucopolysaccharidosistypeiibyengraftmentofexvivolentiviralvectortransducedhematopoieticstemandprogenitorcells AT belurlalithar phenotypiccorrectionofmurinemucopolysaccharidosistypeiibyengraftmentofexvivolentiviralvectortransducedhematopoieticstemandprogenitorcells AT karlenandread phenotypiccorrectionofmurinemucopolysaccharidosistypeiibyengraftmentofexvivolentiviralvectortransducedhematopoieticstemandprogenitorcells AT erlansonolivia phenotypiccorrectionofmurinemucopolysaccharidosistypeiibyengraftmentofexvivolentiviralvectortransducedhematopoieticstemandprogenitorcells AT podetzpedersenkellym phenotypiccorrectionofmurinemucopolysaccharidosistypeiibyengraftmentofexvivolentiviralvectortransducedhematopoieticstemandprogenitorcells AT mckenziejessica phenotypiccorrectionofmurinemucopolysaccharidosistypeiibyengraftmentofexvivolentiviralvectortransducedhematopoieticstemandprogenitorcells AT detellisjenn phenotypiccorrectionofmurinemucopolysaccharidosistypeiibyengraftmentofexvivolentiviralvectortransducedhematopoieticstemandprogenitorcells AT gagnidzekhatuna phenotypiccorrectionofmurinemucopolysaccharidosistypeiibyengraftmentofexvivolentiviralvectortransducedhematopoieticstemandprogenitorcells AT parsonsgeoffrey phenotypiccorrectionofmurinemucopolysaccharidosistypeiibyengraftmentofexvivolentiviralvectortransducedhematopoieticstemandprogenitorcells AT robinsonnicholas phenotypiccorrectionofmurinemucopolysaccharidosistypeiibyengraftmentofexvivolentiviralvectortransducedhematopoieticstemandprogenitorcells AT labarreshelby phenotypiccorrectionofmurinemucopolysaccharidosistypeiibyengraftmentofexvivolentiviralvectortransducedhematopoieticstemandprogenitorcells AT shahsaumil phenotypiccorrectionofmurinemucopolysaccharidosistypeiibyengraftmentofexvivolentiviralvectortransducedhematopoieticstemandprogenitorcells AT furcichjustin phenotypiccorrectionofmurinemucopolysaccharidosistypeiibyengraftmentofexvivolentiviralvectortransducedhematopoieticstemandprogenitorcells AT lundtroyc phenotypiccorrectionofmurinemucopolysaccharidosistypeiibyengraftmentofexvivolentiviralvectortransducedhematopoieticstemandprogenitorcells AT tsaihsingchen phenotypiccorrectionofmurinemucopolysaccharidosistypeiibyengraftmentofexvivolentiviralvectortransducedhematopoieticstemandprogenitorcells AT mcivorrscott phenotypiccorrectionofmurinemucopolysaccharidosistypeiibyengraftmentofexvivolentiviralvectortransducedhematopoieticstemandprogenitorcells AT bonnermelissa phenotypiccorrectionofmurinemucopolysaccharidosistypeiibyengraftmentofexvivolentiviralvectortransducedhematopoieticstemandprogenitorcells |