Cargando…
Yap signalling regulates ductular reactions in mice with CRISPR/Cas9-induced glycogen storage disease type Ia
Glycogen storage disease type Ia (GSD-Ia) is caused by a deficiency in the glucose-6-phosphatase (G6Pase, G6pc) enzyme, which catalyses the final step of gluconeogenesis and glycogenolysis. Accumulation of G6pc can lead to an increase in glycogen and development of fatty liver. Ductular reactions re...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9809376/ https://www.ncbi.nlm.nih.gov/pubmed/36605584 http://dx.doi.org/10.1080/19768354.2022.2139755 |
_version_ | 1784863110073417728 |
---|---|
author | Xie, Yixia Hu, Baowei Gao, Yue Tang, Yaxin Chen, Guohe Shen, Jiayuan Jiang, Zhikai Jiang, He Han, Jiwei Yan, Junyan Jin, Lifang |
author_facet | Xie, Yixia Hu, Baowei Gao, Yue Tang, Yaxin Chen, Guohe Shen, Jiayuan Jiang, Zhikai Jiang, He Han, Jiwei Yan, Junyan Jin, Lifang |
author_sort | Xie, Yixia |
collection | PubMed |
description | Glycogen storage disease type Ia (GSD-Ia) is caused by a deficiency in the glucose-6-phosphatase (G6Pase, G6pc) enzyme, which catalyses the final step of gluconeogenesis and glycogenolysis. Accumulation of G6pc can lead to an increase in glycogen and development of fatty liver. Ductular reactions refer to the proliferation of cholangiocytes and hepatic progenitors, which worsen fatty liver progress. To date, however, ductular reactions in GSD-Ia remain poorly understood. Here, we studied the development and potential underlying mechanism of ductular reactions in GSD-Ia in mice. We first generated GSD-Ia mice using CRISPR/Cas9 to target the exon 3 region of the G6pc gene. The typical GSD-Ia phenotype in G6pc(−/−) mice was then analysed using biochemical and histological assays. Ductular reactions in G6pc(−/−) mice were tested based on the expression of cholangiocytic markers cytokeratin 19 (CK19) and epithelial cell adhesion molecule (EpCAM). Yes-associated protein 1 (Yap) signalling activity was measured using western blot (WB) analysis and quantitative real-time polymerase chain reaction (qRT-PCR). Verteporfin was administered to the G6pc(−/−) mice to inhibit Yap signalling. The CRISPR/Cas9 system efficiently generated G6pc(−/−) mice, which exhibited typical GSD-Ia characteristics, including retarded growth, hypoglycaemia, and fatty liver disease. In addition, CK19- and EpCAM-positive cells as well as Yap signalling activity were increased in the livers of G6pc(−/−) mice. However, verteporfin treatment ameliorated ductular reactions and decreased Yap signalling activity. This study not only improves our understanding of GSD-Ia pathophysiology, but also highlights the potential of novel therapeutic approaches for GSD-Ia such as drug targeting of ductular reactions. |
format | Online Article Text |
id | pubmed-9809376 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-98093762023-01-04 Yap signalling regulates ductular reactions in mice with CRISPR/Cas9-induced glycogen storage disease type Ia Xie, Yixia Hu, Baowei Gao, Yue Tang, Yaxin Chen, Guohe Shen, Jiayuan Jiang, Zhikai Jiang, He Han, Jiwei Yan, Junyan Jin, Lifang Anim Cells Syst (Seoul) Articles Glycogen storage disease type Ia (GSD-Ia) is caused by a deficiency in the glucose-6-phosphatase (G6Pase, G6pc) enzyme, which catalyses the final step of gluconeogenesis and glycogenolysis. Accumulation of G6pc can lead to an increase in glycogen and development of fatty liver. Ductular reactions refer to the proliferation of cholangiocytes and hepatic progenitors, which worsen fatty liver progress. To date, however, ductular reactions in GSD-Ia remain poorly understood. Here, we studied the development and potential underlying mechanism of ductular reactions in GSD-Ia in mice. We first generated GSD-Ia mice using CRISPR/Cas9 to target the exon 3 region of the G6pc gene. The typical GSD-Ia phenotype in G6pc(−/−) mice was then analysed using biochemical and histological assays. Ductular reactions in G6pc(−/−) mice were tested based on the expression of cholangiocytic markers cytokeratin 19 (CK19) and epithelial cell adhesion molecule (EpCAM). Yes-associated protein 1 (Yap) signalling activity was measured using western blot (WB) analysis and quantitative real-time polymerase chain reaction (qRT-PCR). Verteporfin was administered to the G6pc(−/−) mice to inhibit Yap signalling. The CRISPR/Cas9 system efficiently generated G6pc(−/−) mice, which exhibited typical GSD-Ia characteristics, including retarded growth, hypoglycaemia, and fatty liver disease. In addition, CK19- and EpCAM-positive cells as well as Yap signalling activity were increased in the livers of G6pc(−/−) mice. However, verteporfin treatment ameliorated ductular reactions and decreased Yap signalling activity. This study not only improves our understanding of GSD-Ia pathophysiology, but also highlights the potential of novel therapeutic approaches for GSD-Ia such as drug targeting of ductular reactions. Taylor & Francis 2022-11-07 /pmc/articles/PMC9809376/ /pubmed/36605584 http://dx.doi.org/10.1080/19768354.2022.2139755 Text en © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Xie, Yixia Hu, Baowei Gao, Yue Tang, Yaxin Chen, Guohe Shen, Jiayuan Jiang, Zhikai Jiang, He Han, Jiwei Yan, Junyan Jin, Lifang Yap signalling regulates ductular reactions in mice with CRISPR/Cas9-induced glycogen storage disease type Ia |
title | Yap signalling regulates ductular reactions in mice with CRISPR/Cas9-induced glycogen storage disease type Ia |
title_full | Yap signalling regulates ductular reactions in mice with CRISPR/Cas9-induced glycogen storage disease type Ia |
title_fullStr | Yap signalling regulates ductular reactions in mice with CRISPR/Cas9-induced glycogen storage disease type Ia |
title_full_unstemmed | Yap signalling regulates ductular reactions in mice with CRISPR/Cas9-induced glycogen storage disease type Ia |
title_short | Yap signalling regulates ductular reactions in mice with CRISPR/Cas9-induced glycogen storage disease type Ia |
title_sort | yap signalling regulates ductular reactions in mice with crispr/cas9-induced glycogen storage disease type ia |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9809376/ https://www.ncbi.nlm.nih.gov/pubmed/36605584 http://dx.doi.org/10.1080/19768354.2022.2139755 |
work_keys_str_mv | AT xieyixia yapsignallingregulatesductularreactionsinmicewithcrisprcas9inducedglycogenstoragediseasetypeia AT hubaowei yapsignallingregulatesductularreactionsinmicewithcrisprcas9inducedglycogenstoragediseasetypeia AT gaoyue yapsignallingregulatesductularreactionsinmicewithcrisprcas9inducedglycogenstoragediseasetypeia AT tangyaxin yapsignallingregulatesductularreactionsinmicewithcrisprcas9inducedglycogenstoragediseasetypeia AT chenguohe yapsignallingregulatesductularreactionsinmicewithcrisprcas9inducedglycogenstoragediseasetypeia AT shenjiayuan yapsignallingregulatesductularreactionsinmicewithcrisprcas9inducedglycogenstoragediseasetypeia AT jiangzhikai yapsignallingregulatesductularreactionsinmicewithcrisprcas9inducedglycogenstoragediseasetypeia AT jianghe yapsignallingregulatesductularreactionsinmicewithcrisprcas9inducedglycogenstoragediseasetypeia AT hanjiwei yapsignallingregulatesductularreactionsinmicewithcrisprcas9inducedglycogenstoragediseasetypeia AT yanjunyan yapsignallingregulatesductularreactionsinmicewithcrisprcas9inducedglycogenstoragediseasetypeia AT jinlifang yapsignallingregulatesductularreactionsinmicewithcrisprcas9inducedglycogenstoragediseasetypeia |