Cargando…
A radiographic, deep transfer learning framework, adapted to estimate lung opacities from chest x-rays
Chest radiographs (CXRs) are the most widely available radiographic imaging modality used to detect respiratory diseases that result in lung opacities. CXR reports often use non-standardized language that result in subjective, qualitative, and non-reproducible opacity estimates. Our goal was to deve...
Autores principales: | Vardhan, Avantika, Makhnevich, Alex, Omprakash, Pravan, Hirschorn, David, Barish, Matthew, Cohen, Stuart L., Zanos, Theodoros P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9809517/ https://www.ncbi.nlm.nih.gov/pubmed/36597113 http://dx.doi.org/10.1186/s42234-022-00103-0 |
Ejemplares similares
-
The association of clinically relevant variables with chest radiograph lung disease burden quantified in real-time by radiologists upon initial presentation in individuals hospitalized with COVID-19
por: Levy, Todd, et al.
Publicado: (2023) -
Multiple calcific opacities on a chest radiograph
por: Dumne, Pravin, et al.
Publicado: (2019) -
Deep learning-based classification for lung opacities in chest x-ray radiographs through batch control and sensitivity regulation
por: Chang, I-Yun, et al.
Publicado: (2022) -
Young male with a large round radio-opacity on chest X-ray
por: Bansal, Raahat, et al.
Publicado: (2018) -
Ensemble Technique Coupled with Deep Transfer Learning Framework for Automatic Detection of Tuberculosis from Chest X-ray Radiographs
por: Kotei, Evans, et al.
Publicado: (2022)