Cargando…
Distinct features of the host-parasite interactions between nonadherent and adherent Trichomonas vaginalis isolates
Cytoadherence of Trichomonas vaginalis to human vaginal epithelial cells (hVECs) was previously shown to involve surface lipoglycans and several reputed adhesins on the parasite. Herein, we report some new observations on the host-parasite interactions of adherent versus nonadherent T. vaginalis iso...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810166/ https://www.ncbi.nlm.nih.gov/pubmed/36595499 http://dx.doi.org/10.1371/journal.pntd.0011016 |
_version_ | 1784863253353988096 |
---|---|
author | Hsu, Hong-Ming Yang, Yen-Yu Huang, Yu-Hsin Chu, Chien-Hsin Tu, Ting-Jui Wu, Yen-Ting Chiang, Chu-Jen Yang, Shi-Bing Hsu, Daniel K. Liu, Fu-Tong Tai, Jung-Hsiang |
author_facet | Hsu, Hong-Ming Yang, Yen-Yu Huang, Yu-Hsin Chu, Chien-Hsin Tu, Ting-Jui Wu, Yen-Ting Chiang, Chu-Jen Yang, Shi-Bing Hsu, Daniel K. Liu, Fu-Tong Tai, Jung-Hsiang |
author_sort | Hsu, Hong-Ming |
collection | PubMed |
description | Cytoadherence of Trichomonas vaginalis to human vaginal epithelial cells (hVECs) was previously shown to involve surface lipoglycans and several reputed adhesins on the parasite. Herein, we report some new observations on the host-parasite interactions of adherent versus nonadherent T. vaginalis isolates to hVECs. The binding of the TH17 adherent isolate to hVECs exhibited an initial discrete phase followed by an aggregation phase inhibited by lactose. T. vaginalis infection immediately induced surface expression of galectin-1 and -3, with extracellular amounts in the spent medium initially decreasing and then increasing thereafter over the next 60 min. Extracellular galectin-1 and -3 were detected on the parasite surface but only the TH17 adherent isolate could uptake galectin-3 via the lysosomes. Only the adherent isolate could morphologically transform from the round-up flagellate with numerous transient protrusions into a flat amoeboid form on contact with the solid surface. Cytochalasin D challenge revealed that actin organization was essential to parasite morphogenesis and cytoadherence. Real-time microscopy showed that parasite exploring and anchoring on hVECs via the axostyle may be required for initial cytoadherence. Together, the parasite cytoskeleton behaviors may collaborate with cell surface adhesion molecules for cytoadherence. The nonadherent isolate migrated faster than the adherent isolate, with motility transiently increasing in the presence of hVECs. Meanwhile, differential histone acetylation was detected between the two isolates. Also, TH17 without Mycoplasma symbiosis suggests that symbiont might not determine TH17 innate cytoadherence. Our findings regarding distinctive host-parasite interactions of the isolates may provide novel insights into T. vaginalis infection. |
format | Online Article Text |
id | pubmed-9810166 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-98101662023-01-04 Distinct features of the host-parasite interactions between nonadherent and adherent Trichomonas vaginalis isolates Hsu, Hong-Ming Yang, Yen-Yu Huang, Yu-Hsin Chu, Chien-Hsin Tu, Ting-Jui Wu, Yen-Ting Chiang, Chu-Jen Yang, Shi-Bing Hsu, Daniel K. Liu, Fu-Tong Tai, Jung-Hsiang PLoS Negl Trop Dis Research Article Cytoadherence of Trichomonas vaginalis to human vaginal epithelial cells (hVECs) was previously shown to involve surface lipoglycans and several reputed adhesins on the parasite. Herein, we report some new observations on the host-parasite interactions of adherent versus nonadherent T. vaginalis isolates to hVECs. The binding of the TH17 adherent isolate to hVECs exhibited an initial discrete phase followed by an aggregation phase inhibited by lactose. T. vaginalis infection immediately induced surface expression of galectin-1 and -3, with extracellular amounts in the spent medium initially decreasing and then increasing thereafter over the next 60 min. Extracellular galectin-1 and -3 were detected on the parasite surface but only the TH17 adherent isolate could uptake galectin-3 via the lysosomes. Only the adherent isolate could morphologically transform from the round-up flagellate with numerous transient protrusions into a flat amoeboid form on contact with the solid surface. Cytochalasin D challenge revealed that actin organization was essential to parasite morphogenesis and cytoadherence. Real-time microscopy showed that parasite exploring and anchoring on hVECs via the axostyle may be required for initial cytoadherence. Together, the parasite cytoskeleton behaviors may collaborate with cell surface adhesion molecules for cytoadherence. The nonadherent isolate migrated faster than the adherent isolate, with motility transiently increasing in the presence of hVECs. Meanwhile, differential histone acetylation was detected between the two isolates. Also, TH17 without Mycoplasma symbiosis suggests that symbiont might not determine TH17 innate cytoadherence. Our findings regarding distinctive host-parasite interactions of the isolates may provide novel insights into T. vaginalis infection. Public Library of Science 2023-01-03 /pmc/articles/PMC9810166/ /pubmed/36595499 http://dx.doi.org/10.1371/journal.pntd.0011016 Text en © 2023 Hsu et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Hsu, Hong-Ming Yang, Yen-Yu Huang, Yu-Hsin Chu, Chien-Hsin Tu, Ting-Jui Wu, Yen-Ting Chiang, Chu-Jen Yang, Shi-Bing Hsu, Daniel K. Liu, Fu-Tong Tai, Jung-Hsiang Distinct features of the host-parasite interactions between nonadherent and adherent Trichomonas vaginalis isolates |
title | Distinct features of the host-parasite interactions between nonadherent and adherent Trichomonas vaginalis isolates |
title_full | Distinct features of the host-parasite interactions between nonadherent and adherent Trichomonas vaginalis isolates |
title_fullStr | Distinct features of the host-parasite interactions between nonadherent and adherent Trichomonas vaginalis isolates |
title_full_unstemmed | Distinct features of the host-parasite interactions between nonadherent and adherent Trichomonas vaginalis isolates |
title_short | Distinct features of the host-parasite interactions between nonadherent and adherent Trichomonas vaginalis isolates |
title_sort | distinct features of the host-parasite interactions between nonadherent and adherent trichomonas vaginalis isolates |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810166/ https://www.ncbi.nlm.nih.gov/pubmed/36595499 http://dx.doi.org/10.1371/journal.pntd.0011016 |
work_keys_str_mv | AT hsuhongming distinctfeaturesofthehostparasiteinteractionsbetweennonadherentandadherenttrichomonasvaginalisisolates AT yangyenyu distinctfeaturesofthehostparasiteinteractionsbetweennonadherentandadherenttrichomonasvaginalisisolates AT huangyuhsin distinctfeaturesofthehostparasiteinteractionsbetweennonadherentandadherenttrichomonasvaginalisisolates AT chuchienhsin distinctfeaturesofthehostparasiteinteractionsbetweennonadherentandadherenttrichomonasvaginalisisolates AT tutingjui distinctfeaturesofthehostparasiteinteractionsbetweennonadherentandadherenttrichomonasvaginalisisolates AT wuyenting distinctfeaturesofthehostparasiteinteractionsbetweennonadherentandadherenttrichomonasvaginalisisolates AT chiangchujen distinctfeaturesofthehostparasiteinteractionsbetweennonadherentandadherenttrichomonasvaginalisisolates AT yangshibing distinctfeaturesofthehostparasiteinteractionsbetweennonadherentandadherenttrichomonasvaginalisisolates AT hsudanielk distinctfeaturesofthehostparasiteinteractionsbetweennonadherentandadherenttrichomonasvaginalisisolates AT liufutong distinctfeaturesofthehostparasiteinteractionsbetweennonadherentandadherenttrichomonasvaginalisisolates AT taijunghsiang distinctfeaturesofthehostparasiteinteractionsbetweennonadherentandadherenttrichomonasvaginalisisolates |