Cargando…
scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data
Single cell RNA sequencing (scRNA-seq) enables researchers to characterize transcriptomic profiles at the single-cell resolution with increasingly high throughput. Clustering is a crucial step in single cell analysis. Clustering analysis of transcriptome profiled by scRNA-seq can reveal the heteroge...
Autores principales: | Wang, HaiYun, Zhao, JianPing, Zheng, ChunHou, Su, YanSen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810169/ https://www.ncbi.nlm.nih.gov/pubmed/36534702 http://dx.doi.org/10.1371/journal.pcbi.1010772 |
Ejemplares similares
-
SCDRHA: A scRNA-Seq Data Dimensionality Reduction Algorithm Based on Hierarchical Autoencoder
por: Zhao, Jianping, et al.
Publicado: (2021) -
Entropy subspace separation-based clustering for noise reduction (ENCORE) of scRNA-seq data
por: Song, Jia, et al.
Publicado: (2020) -
A clustering method for small scRNA-seq data based on subspace and weighted distance
por: Ning, Zilan, et al.
Publicado: (2023) -
Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge
por: Mukherjee, Sumit, et al.
Publicado: (2018) -
Contrastive self-supervised clustering of scRNA-seq data
por: Ciortan, Madalina, et al.
Publicado: (2021)