Cargando…
Adverse drug event detection using natural language processing: A scoping review of supervised learning methods
To reduce adverse drug events (ADEs), hospitals need a system to support them in monitoring ADE occurrence routinely, rapidly, and at scale. Natural language processing (NLP), a computerized approach to analyze text data, has shown promising results for the purpose of ADE detection in the context of...
Autores principales: | Murphy, Rachel M., Klopotowska, Joanna E., de Keizer, Nicolette F., Jager, Kitty J., Leopold, Jan Hendrik, Dongelmans, Dave A., Abu-Hanna, Ameen, Schut, Martijn C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810201/ https://www.ncbi.nlm.nih.gov/pubmed/36595517 http://dx.doi.org/10.1371/journal.pone.0279842 |
Ejemplares similares
-
Electronic health record-based prediction models for in-hospital adverse drug event diagnosis or prognosis: a systematic review
por: Yasrebi-de Kom, Izak A R, et al.
Publicado: (2023) -
Incorrect application of the KDIGO acute kidney injury staging criteria
por: Yasrebi-de Kom, Izak A R, et al.
Publicado: (2021) -
Heterogeneity in the Identification of Potential Drug‐Drug Interactions in the Intensive Care Unit: A Systematic Review, Critical Appraisal, and Reporting Recommendations
por: Bakker, Tinka, et al.
Publicado: (2022) -
Acute kidney injury associated with nephrotoxic drugs in critically ill patients: a multicenter cohort study using electronic health record data
por: Yasrebi-de Kom, Izak A R, et al.
Publicado: (2023) -
Machine learning models for predicting acute kidney injury: a systematic review and critical appraisal
por: Vagliano, Iacopo, et al.
Publicado: (2022)