Cargando…
Adjusting products with compensatory elements using a digital twin: Model and methodology
The article presents a novel strategy for reducing the geometric error of a vehicle headlamp equipped with a set of calibration screws, which represents a product assembly. Using a general method for designing and implementing a digital twin, we determined the optimal configuration for a compensator...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810204/ https://www.ncbi.nlm.nih.gov/pubmed/36595512 http://dx.doi.org/10.1371/journal.pone.0279988 |
Sumario: | The article presents a novel strategy for reducing the geometric error of a vehicle headlamp equipped with a set of calibration screws, which represents a product assembly. Using a general method for designing and implementing a digital twin, we determined the optimal configuration for a compensatory element that minimizes the total geometric error. Formulated as a problem of constrained minimization, we solved the error using the gradient method and the Broyden–Fletcher–Goldfarb–Shanno method. Products are automatically adjusted according to this optimal setting during the manufacturing process. The results of this novel method indicate that all points can be aligned when the non-individual calibration satifies a geometrical specification of 92%. The digital twin approach was compared to the manufacturing process on 84,055 samples. Overall, 98.19% of the samples were perfectly aligned. |
---|