Cargando…
A machine learning-based phenotype for long COVID in children: an EHR-based study from the RECOVER program
BACKGROUND: As clinical understanding of pediatric Post-Acute Sequelae of SARS CoV-2 (PASC) develops, and hence the clinical definition evolves, it is desirable to have a method to reliably identify patients who are likely to have post-acute sequelae of SARS CoV-2 (PASC) in health systems data. METH...
Autores principales: | Lorman, Vitaly, Razzaghi, Hanieh, Song, Xing, Morse, Keith, Utidjian, Levon, Allen, Andrea J., Rao, Suchitra, Rogerson, Colin, Bennett, Tellen D., Morizono, Hiroki, Eckrich, Daniel, Jhaveri, Ravi, Huang, Yungui, Ranade, Daksha, Pajor, Nathan, Lee, Grace M., Forrest, Christopher B., Bailey, L. Charles |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810222/ https://www.ncbi.nlm.nih.gov/pubmed/36597534 http://dx.doi.org/10.1101/2022.12.22.22283791 |
Ejemplares similares
-
A machine learning-based phenotype for long COVID in children: An EHR-based study from the RECOVER program
por: Lorman, Vitaly, et al.
Publicado: (2023) -
1362. Pediatric long COVID subphenotypes: an EHR-based study from the RECOVER program
por: Lorman, Vitaly, et al.
Publicado: (2023) -
Spectrum of severity of multisystem inflammatory syndrome in children: an EHR-based cohort study from the RECOVER program
por: Rao, Suchitra, et al.
Publicado: (2023) -
Understanding pediatric long COVID using a tree-based scan statistic approach: an EHR-based cohort study from the RECOVER Program
por: Lorman, Vitaly, et al.
Publicado: (2023) -
457. Temporal Evolution of Subphenotypes of Pediatric PASC: An EHR-Based Retrospective Cohort Study from the RECOVER Program
por: Allen, Andrea J, et al.
Publicado: (2023)