Cargando…
Rapid remodeling observed at mid-term in-vivo study of a smart reinforced acellular vascular graft implanted on a rat model
BACKGROUND: The poor performance of conventional techniques used in cardiovascular disease patients requiring hemodialysis or arterial bypass grafting has prompted tissue engineers to search for clinically appropriate off-the-shelf vascular grafts. Most patients with cardiovascular disease lack suit...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810246/ https://www.ncbi.nlm.nih.gov/pubmed/36597162 http://dx.doi.org/10.1186/s13036-022-00313-9 |
Sumario: | BACKGROUND: The poor performance of conventional techniques used in cardiovascular disease patients requiring hemodialysis or arterial bypass grafting has prompted tissue engineers to search for clinically appropriate off-the-shelf vascular grafts. Most patients with cardiovascular disease lack suitable autologous tissue because of age or previous surgery. Commercially available vascular grafts with diameters of < 5 mm often fail because of thrombosis and intimal hyperplasia. RESULT: Here, we tested tubular biodegradable poly-e-caprolactone/polydioxanone (PCL/PDO) electrospun vascular grafts in a rat model of aortic interposition for up to 12 weeks. The grafts demonstrated excellent patency (100%) confirmed by Doppler Ultrasound, resisted aneurysmal dilation and intimal hyperplasia, and yielded neoarteries largely free of foreign materials. At 12 weeks, the grafts resembled native arteries with confluent endothelium, synchronous pulsation, a contractile smooth muscle layer, and co-expression of various extracellular matrix components (elastin, collagen, and glycosaminoglycan). CONCLUSIONS: The structural and functional properties comparable to native vessels observed in the neoartery indicate their potential application as an alternative for the replacement of damaged small-diameter grafts. This synthetic off-the-shelf device may be suitable for patients without autologous vessels. However, for clinical application of these grafts, long-term studies (> 1.5 years) in large animals with a vasculature similar to humans are needed. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13036-022-00313-9. |
---|