Cargando…
A New Complex Design of Fe (II) Isoleucine Dithiocarbamate as a Novel Anticancer and Antivirus against SARSCOV-2 (COVID-19)
BACKGROUND: This study was carried out to synthesize a new complex of Fe(II) with isoleucine dithiocarbamate ligand and to determine its potential as an anticancer and antiviral agent for SARSCOV-2. METHODS: The synthesized complexes were then characterized by UV-vis and FT-IR spectroscopy and their...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
West Asia Organization for Cancer Prevention
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810283/ https://www.ncbi.nlm.nih.gov/pubmed/36172674 http://dx.doi.org/10.31557/APJCP.2022.23.9.3113 |
Sumario: | BACKGROUND: This study was carried out to synthesize a new complex of Fe(II) with isoleucine dithiocarbamate ligand and to determine its potential as an anticancer and antiviral agent for SARSCOV-2. METHODS: The synthesized complexes were then characterized by UV-vis and FT-IR spectroscopy and their melting points. The value of the conductivity of the complex compound is also determined. Anti-cancer activity was tested in vitro and molecular docking. Its potential as an antiviral against SARSCOV-2 was also carried out by molecular docking. Pharmacokinetics/ADMET properties were also carried out on the complex. RESULT: Spectral results showed the successful synthesis of Fe(II) isoleucine dithiocarbamate complex. The complex produced UV-vis spectra at 268 and 575 nm, and the IR data at 399–599 cm-1 showed the coordination between the Fe(II) atoms with sulphur, nitrogen and oxygen of the isoleucine dithiocarbamate ligand. Fe(II) isoleucine dithiocarbamate had a cytotoxicity effect on the MCF-7 cell line (IC(50) =613 µg/mL). The complex significantly caused morphological changes in the breast cancer cell line, finally leading to cell apoptosis. CONCLUSION: Cytotoxic test of Fe(II) isoleucine dithiocarbamate showed moderate anticancer activity on MCF-7 cancer cells and showed antiviral activity against SARSCOV-2 by interfering with spike glycoprotein –ACE2 receptors, and inhibiting major proteases and 3Clpro. |
---|