Cargando…

The Anticancer Effects of Novel Imidazo[1,2-a]Pyridine Compounds against HCC1937 Breast Cancer Cells

BACKGROUND: Anticancer drugs confront clinical obstacles such as drug resistance and adverse effects. Imidazo[1,2-a]pyridines (IPs) compounds have lately gained considerable interest as possible anticancer therapeutics due to their potent inhibitory function against cancers cells. This study was to...

Descripción completa

Detalles Bibliográficos
Autores principales: Altaher, Akram M, Adris, Mohammed A, Aliwaini, Saeb H, Awadallah, Adel M, Morjan, Rami Y
Formato: Online Artículo Texto
Lenguaje:English
Publicado: West Asia Organization for Cancer Prevention 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810306/
https://www.ncbi.nlm.nih.gov/pubmed/36172656
http://dx.doi.org/10.31557/APJCP.2022.23.9.2943
_version_ 1784863283970310144
author Altaher, Akram M
Adris, Mohammed A
Aliwaini, Saeb H
Awadallah, Adel M
Morjan, Rami Y
author_facet Altaher, Akram M
Adris, Mohammed A
Aliwaini, Saeb H
Awadallah, Adel M
Morjan, Rami Y
author_sort Altaher, Akram M
collection PubMed
description BACKGROUND: Anticancer drugs confront clinical obstacles such as drug resistance and adverse effects. Imidazo[1,2-a]pyridines (IPs) compounds have lately gained considerable interest as possible anticancer therapeutics due to their potent inhibitory function against cancers cells. This study was to determine the anticancer activities of three novel IPs (IP-5, IP-6, and IP-7) against the HCC1937 breast cancer cell line in vitro. MATERIALS AND METHODS: The cytotoxic and anti-proliferative effects of IPs compounds in HCC1937 cells were determined by cell viability (MTT) assay, trypan blue assay, and clonogenic survival assay. Scratch motility assay was used to test the antimigration ability of the IPs. Western blot analysis was carried out to detect the level of apoptosis and cell cycle protein markers and to understand the mechanism of action of IPs compounds. RESULTS: IP-5 and IP-6 have a strong cytotoxic impact against HCC1937 cells with IC50 values of 45µM and 47.7µM respectively. IP-7 possesses less cytotoxic effect against HCC1937 cells with IC50 of 79.6µM. Trypan blue assay showed that the three compounds induce significant cell death in the HCC1937 cells. Clonogenic and mammosphere assays demonstrated that IP-5 reduced the HCC1937 cells survival rate by more than 25.0% at 1000 cell concentrations. Western blotting analysis showed that IP-5 compound causes cell cycle arrest as noted by the increasing levels of p53 and p21 in treated cells. IP-5 induced an extrinsic apoptosis pathway as reveals from the increased activity of caspase 7, caspase 8, and the increasing level of PARP cleavage in treated cells. Also, IP-5 treated cells revealed segmented chromatin which is characteristic of apoptotic cells as shown by DAPI stain. Importantly, In comparison to control cells, IP-5-treated cells exhibited lower levels of pAKT. CONCLUSIONS: The novel three IPs compounds represent potential active anticancer compounds against HCC1937 breast cancer cells in vitro.
format Online
Article
Text
id pubmed-9810306
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher West Asia Organization for Cancer Prevention
record_format MEDLINE/PubMed
spelling pubmed-98103062023-01-06 The Anticancer Effects of Novel Imidazo[1,2-a]Pyridine Compounds against HCC1937 Breast Cancer Cells Altaher, Akram M Adris, Mohammed A Aliwaini, Saeb H Awadallah, Adel M Morjan, Rami Y Asian Pac J Cancer Prev Research Article BACKGROUND: Anticancer drugs confront clinical obstacles such as drug resistance and adverse effects. Imidazo[1,2-a]pyridines (IPs) compounds have lately gained considerable interest as possible anticancer therapeutics due to their potent inhibitory function against cancers cells. This study was to determine the anticancer activities of three novel IPs (IP-5, IP-6, and IP-7) against the HCC1937 breast cancer cell line in vitro. MATERIALS AND METHODS: The cytotoxic and anti-proliferative effects of IPs compounds in HCC1937 cells were determined by cell viability (MTT) assay, trypan blue assay, and clonogenic survival assay. Scratch motility assay was used to test the antimigration ability of the IPs. Western blot analysis was carried out to detect the level of apoptosis and cell cycle protein markers and to understand the mechanism of action of IPs compounds. RESULTS: IP-5 and IP-6 have a strong cytotoxic impact against HCC1937 cells with IC50 values of 45µM and 47.7µM respectively. IP-7 possesses less cytotoxic effect against HCC1937 cells with IC50 of 79.6µM. Trypan blue assay showed that the three compounds induce significant cell death in the HCC1937 cells. Clonogenic and mammosphere assays demonstrated that IP-5 reduced the HCC1937 cells survival rate by more than 25.0% at 1000 cell concentrations. Western blotting analysis showed that IP-5 compound causes cell cycle arrest as noted by the increasing levels of p53 and p21 in treated cells. IP-5 induced an extrinsic apoptosis pathway as reveals from the increased activity of caspase 7, caspase 8, and the increasing level of PARP cleavage in treated cells. Also, IP-5 treated cells revealed segmented chromatin which is characteristic of apoptotic cells as shown by DAPI stain. Importantly, In comparison to control cells, IP-5-treated cells exhibited lower levels of pAKT. CONCLUSIONS: The novel three IPs compounds represent potential active anticancer compounds against HCC1937 breast cancer cells in vitro. West Asia Organization for Cancer Prevention 2022-09 /pmc/articles/PMC9810306/ /pubmed/36172656 http://dx.doi.org/10.31557/APJCP.2022.23.9.2943 Text en https://creativecommons.org/licenses/by-nc/4.0/This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License. https://creativecommons.org/licenses/by-nc/4.0/
spellingShingle Research Article
Altaher, Akram M
Adris, Mohammed A
Aliwaini, Saeb H
Awadallah, Adel M
Morjan, Rami Y
The Anticancer Effects of Novel Imidazo[1,2-a]Pyridine Compounds against HCC1937 Breast Cancer Cells
title The Anticancer Effects of Novel Imidazo[1,2-a]Pyridine Compounds against HCC1937 Breast Cancer Cells
title_full The Anticancer Effects of Novel Imidazo[1,2-a]Pyridine Compounds against HCC1937 Breast Cancer Cells
title_fullStr The Anticancer Effects of Novel Imidazo[1,2-a]Pyridine Compounds against HCC1937 Breast Cancer Cells
title_full_unstemmed The Anticancer Effects of Novel Imidazo[1,2-a]Pyridine Compounds against HCC1937 Breast Cancer Cells
title_short The Anticancer Effects of Novel Imidazo[1,2-a]Pyridine Compounds against HCC1937 Breast Cancer Cells
title_sort anticancer effects of novel imidazo[1,2-a]pyridine compounds against hcc1937 breast cancer cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810306/
https://www.ncbi.nlm.nih.gov/pubmed/36172656
http://dx.doi.org/10.31557/APJCP.2022.23.9.2943
work_keys_str_mv AT altaherakramm theanticancereffectsofnovelimidazo12apyridinecompoundsagainsthcc1937breastcancercells
AT adrismohammeda theanticancereffectsofnovelimidazo12apyridinecompoundsagainsthcc1937breastcancercells
AT aliwainisaebh theanticancereffectsofnovelimidazo12apyridinecompoundsagainsthcc1937breastcancercells
AT awadallahadelm theanticancereffectsofnovelimidazo12apyridinecompoundsagainsthcc1937breastcancercells
AT morjanramiy theanticancereffectsofnovelimidazo12apyridinecompoundsagainsthcc1937breastcancercells
AT altaherakramm anticancereffectsofnovelimidazo12apyridinecompoundsagainsthcc1937breastcancercells
AT adrismohammeda anticancereffectsofnovelimidazo12apyridinecompoundsagainsthcc1937breastcancercells
AT aliwainisaebh anticancereffectsofnovelimidazo12apyridinecompoundsagainsthcc1937breastcancercells
AT awadallahadelm anticancereffectsofnovelimidazo12apyridinecompoundsagainsthcc1937breastcancercells
AT morjanramiy anticancereffectsofnovelimidazo12apyridinecompoundsagainsthcc1937breastcancercells