Cargando…
Forecasting brain activity based on models of spatiotemporal brain dynamics: A comparison of graph neural network architectures
Comprehending the interplay between spatial and temporal characteristics of neural dynamics can contribute to our understanding of information processing in the human brain. Graph neural networks (GNNs) provide a new possibility to interpret graph-structured signals like those observed in complex br...
Autores principales: | Wein, S., Schüller, A., Tomé, A. M., Malloni, W. M., Greenlee, M. W., Lang, E. W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810370/ https://www.ncbi.nlm.nih.gov/pubmed/36607180 http://dx.doi.org/10.1162/netn_a_00252 |
Ejemplares similares
-
A graph neural network framework for causal inference in brain networks
por: Wein, S., et al.
Publicado: (2021) -
Brain Connectivity Studies on Structure-Function Relationships: A Short Survey with an Emphasis on Machine Learning
por: Wein, Simon, et al.
Publicado: (2021) -
Investigation of an efficient multi-modal convolutional neural network for multiple sclerosis lesion detection
por: Raab, Florian, et al.
Publicado: (2023) -
Lack of orientation specific adaptation to vertically oriented Glass patterns in human visual cortex: an fMRI adaptation investigation
por: Pavan, Andrea, et al.
Publicado: (2023) -
Interpretability of Spatiotemporal Dynamics of the Brain Processes Followed by Mindfulness Intervention in a Brain-Inspired Spiking Neural Network Architecture
por: Doborjeh, Zohreh, et al.
Publicado: (2020)