Cargando…
MTSS-AAE: Multi-task semi-supervised adversarial autoencoding for COVID-19 detection based on chest X-ray images
Efficient diagnosis of COVID-19 plays an important role in preventing the spread of the disease. There are three major modalities to diagnose COVID-19 which include polymerase chain reaction tests, computed tomography scans, and chest X-rays (CXRs). Among these, diagnosis using CXRs is the most econ...
Autores principales: | Ullah, Zahid, Usman, Muhammad, Gwak, Jeonghwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810379/ https://www.ncbi.nlm.nih.gov/pubmed/36619348 http://dx.doi.org/10.1016/j.eswa.2022.119475 |
Ejemplares similares
-
SSMD-UNet: semi-supervised multi-task decoders network for diabetic retinopathy segmentation
por: Ullah, Zahid, et al.
Publicado: (2023) -
Adversarial Autoencoder and Multi-Task Semi-Supervised Learning for Multi-stage Process
por: Mendes, Andre, et al.
Publicado: (2020) -
Densely attention mechanism based network for COVID-19 detection in chest X-rays
por: Ullah, Zahid, et al.
Publicado: (2023) -
Con-AAE: contrastive cycle adversarial autoencoders for single-cell multi-omics alignment and integration
por: Wang, Xuesong, et al.
Publicado: (2023) -
scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data
por: Wang, Zile, et al.
Publicado: (2023)