Cargando…
Spatio-temporal stochastic differential equations for crime incidence modeling
We propose a methodology for the quantitative fitting and forecasting of real spatio-temporal crime data, based on stochastic differential equations. The analysis is focused on the city of Valencia, Spain, for which 90247 robberies and thefts with their latitude-longitude positions are available for...
Autores principales: | Calatayud, Julia, Jornet, Marc, Mateu, Jorge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810525/ https://www.ncbi.nlm.nih.gov/pubmed/36619700 http://dx.doi.org/10.1007/s00477-022-02369-x |
Ejemplares similares
-
Modeling noisy time-series data of crime with stochastic differential equations
por: Calatayud, Julia, et al.
Publicado: (2022) -
A stochastic Bayesian bootstrapping model for COVID-19 data
por: Calatayud, Julia, et al.
Publicado: (2022) -
Modelling underreported spatio-temporal crime events
por: Riascos Villegas, Álvaro J., et al.
Publicado: (2023) -
Multivariate Kalman filtering for spatio-temporal processes
por: Ferreira, Guillermo, et al.
Publicado: (2022) -
Modeling infectious disease dynamics: Integrating contact tracing-based stochastic compartment and spatio-temporal risk models
por: Mahmood, Mateen, et al.
Publicado: (2022)