Cargando…

Fecal microbiota composition affects in vitro fermentation of rye, oat, and wheat bread

Fermentation of dietary fiber by gut microbes produces short-chain fatty acids (SCFA), but fermentation outcomes are affected by dietary fiber source and microbiota composition. The aim of this study was to investigate the effect of two different fecal microbial compositions on in vitro fermentation...

Descripción completa

Detalles Bibliográficos
Autores principales: Pirkola, Laura, Dicksved, Johan, Loponen, Jussi, Marklinder, Ingela, Andersson, Roger
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810601/
https://www.ncbi.nlm.nih.gov/pubmed/36596824
http://dx.doi.org/10.1038/s41598-022-26847-y
Descripción
Sumario:Fermentation of dietary fiber by gut microbes produces short-chain fatty acids (SCFA), but fermentation outcomes are affected by dietary fiber source and microbiota composition. The aim of this study was to investigate the effect of two different fecal microbial compositions on in vitro fermentation of a standardized amount of oat, rye, and wheat breads. Two human fecal donors with different microbial community composition were recruited. Bread samples were digested enzymatically. An in vitro fermentation model was used to study SCFA production, dietary fiber degradation, pH, and changes in microbiota. Feces from donor I had high relative abundance of Bacteroides and Escherichia/Shigella, whereas feces from donor II were high in Prevotella and Subdoligranulum. Shifts in microbiota composition were observed during fermentation. SCFA levels were low in the samples with fecal microbiota from donor I after 8 h of fermentation, but after 24 h acetate and propionate levels were similar in the samples from the different donors. Butyrate levels were higher in the fermentation samples from donor II, especially with rye substrate, where high abundance of Subdoligranulum was observed. Dietary fiber degradation was also higher in the fermentation samples from donor II. In conclusion, fermentation capacity and substrate utilization differed between the two different microbiota compositions.