Cargando…
Tube length optimization of titania nanotube array for efficient photoelectrochemical water splitting
Anodic TiO(2) nanotube arrays (TNTAs) have attracted much attention due to their excellent photoelectrochemical (PEC) properties. In this work, the tube length of TNTAs was optimized for efficient PEC water splitting under two different conditions, in which very few or a massive amount of gas bubble...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810667/ https://www.ncbi.nlm.nih.gov/pubmed/36596849 http://dx.doi.org/10.1038/s41598-022-27278-5 |
Sumario: | Anodic TiO(2) nanotube arrays (TNTAs) have attracted much attention due to their excellent photoelectrochemical (PEC) properties. In this work, the tube length of TNTAs was optimized for efficient PEC water splitting under two different conditions, in which very few or a massive amount of gas bubbles were generated on the electrodes. As a result, relatively longer TNTAs were found to be preferable for higher PEC performance when a larger number of bubbles were generated. This suggests that the mass transport in the electrolyte is assisted by the generated bubbles, so that the electrode surfaces are more easily exposed to the fresh electrolyte, leading to the higher PEC performance. |
---|