Cargando…
Estimation of wheat tiller density using remote sensing data and machine learning methods
The tiller density is a key agronomic trait of winter wheat that is essential to field management and yield estimation. The traditional method of obtaining the wheat tiller density is based on manual counting, which is inefficient and error prone. In this study, we established machine learning model...
Autores principales: | Hu, Jinkang, Zhang, Bing, Peng, Dailiang, Yu, Ruyi, Liu, Yao, Xiao, Chenchao, Li, Cunjun, Dong, Tao, Fang, Moren, Ye, Huichun, Huang, Wenjiang, Lin, Binbin, Wang, Mengmeng, Cheng, Enhui, Yang, Songlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810811/ https://www.ncbi.nlm.nih.gov/pubmed/36618628 http://dx.doi.org/10.3389/fpls.2022.1075856 |
Ejemplares similares
-
Wheat yield estimation using remote sensing data based on machine learning approaches
por: Cheng, Enhui, et al.
Publicado: (2022) -
Accurate estimation of fractional vegetation cover for winter wheat by integrated unmanned aerial systems and satellite images
por: Yang, Songlin, et al.
Publicado: (2023) -
Tiller Number1 encodes an ankyrin repeat protein that controls tillering in bread wheat
por: Dong, Chunhao, et al.
Publicado: (2023) -
Detecting Key Factors of Grasshopper Occurrence in Typical Steppe and Meadow Steppe by Integrating Machine Learning Model and Remote Sensing Data
por: Lu, Longhui, et al.
Publicado: (2022) -
Author Correction: Tiller Number1 encodes an ankyrin repeat protein that controls tillering in bread wheat
por: Dong, Chunhao, et al.
Publicado: (2023)