Cargando…

Impact of pathogenic FBN1 variant types on the development of severe scoliosis in patients with Marfan syndrome

BACKGROUND: Among the several musculoskeletal manifestations in patients with Marfan syndrome, spinal deformity causes pain and respiratory impairment and is a great hindrance to patients’ daily activities. The present study elucidates the genetic risk factors for the development of severe scoliosis...

Descripción completa

Detalles Bibliográficos
Autores principales: Taniguchi, Yuki, Takeda, Norifumi, Inuzuka, Ryo, Matsubayashi, Yoshitaka, Kato, So, Doi, Toru, Yagi, Hiroki, Yamauchi, Haruo, Ando, Masahiko, Oshima, Yasushi, Tanaka, Sakae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9811093/
https://www.ncbi.nlm.nih.gov/pubmed/34916231
http://dx.doi.org/10.1136/jmedgenet-2021-108186
Descripción
Sumario:BACKGROUND: Among the several musculoskeletal manifestations in patients with Marfan syndrome, spinal deformity causes pain and respiratory impairment and is a great hindrance to patients’ daily activities. The present study elucidates the genetic risk factors for the development of severe scoliosis in patients with Marfan syndrome. METHODS: We retrospectively evaluated 278 patients with pathogenic or likely pathogenic FBN1 variants. The patients were divided into those with (n=57) or without (n=221) severe scoliosis. Severe scoliosis was defined as (1) patients undergoing surgery before 50 years of age or (2) patients with a Cobb angle exceeding 50° before 50 years of age. The variants were classified as protein-truncating variants (PTVs), which included variants creating premature termination codons and inframe exon-skipping, or non-PTVs, based on their location and predicted amino acid alterations, and the effect of the FBN1 genotype on the development of severe scoliosis was examined. The impact of location of FBN1 variants on the development of severe scoliosis was also investigated. RESULTS: Univariate and multivariate analyses revealed that female sex, PTVs of FBN1 and variants in the neonatal region (exons 25–33) were all independent significant predictive factors for the development of severe scoliosis. Furthermore, these factors were identified as predictors of progression of existing scoliosis into severe state. CONCLUSIONS: We elucidated the genetic risk factors for the development of severe scoliosis in patients with Marfan syndrome. Patients harbouring pathogenic FBN1 variants with these genetic risk factors should be monitored carefully for scoliosis progression.