Cargando…
Spike encoding techniques for IoT time-varying signals benchmarked on a neuromorphic classification task
Spiking Neural Networks (SNNs), known for their potential to enable low energy consumption and computational cost, can bring significant advantages to the realm of embedded machine learning for edge applications. However, input coming from standard digital sensors must be encoded into spike trains b...
Autores principales: | Forno, Evelina, Fra, Vittorio, Pignari, Riccardo, Macii, Enrico, Urgese, Gianvito |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9811205/ https://www.ncbi.nlm.nih.gov/pubmed/36620463 http://dx.doi.org/10.3389/fnins.2022.999029 |
Ejemplares similares
-
Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic hardware
por: Müller-Cleve, Simon F., et al.
Publicado: (2022) -
Editorial: Powering the next-generation IoT applications: new tools and emerging technologies for the development of Neuromorphic System of Systems
por: Urgese, Gianvito, et al.
Publicado: (2023) -
A Deep Learning Approach to the Screening of Oncogenic Gene Fusions in Humans
por: Lovino, Marta, et al.
Publicado: (2019) -
Binary Associative Memories as a Benchmark for Spiking Neuromorphic Hardware
por: Stöckel, Andreas, et al.
Publicado: (2017) -
Skimming Digits: Neuromorphic Classification of Spike-Encoded Images
por: Cohen, Gregory K., et al.
Publicado: (2016)