Cargando…
Lipidomics analysis reveals new insights into the goose fatty liver formation
Our previous study described the mechanism of goose fatty liver formation from cell culture and transcriptome. However, how lipidome of goose liver response to overfeeding is unclear. In this study, we used the same batch of geese (control group and corn flour overfeeding group) to explore the lipid...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9811251/ https://www.ncbi.nlm.nih.gov/pubmed/36586388 http://dx.doi.org/10.1016/j.psj.2022.102428 |
_version_ | 1784863492053925888 |
---|---|
author | Wei, Rongxue Ning, Rong Han, Chunchun Wei, Shouhai Teng, Yongqiang Li, Liang Liu, Hehe Hu, Shengqiang Kang, Bo Xu, Hengyong |
author_facet | Wei, Rongxue Ning, Rong Han, Chunchun Wei, Shouhai Teng, Yongqiang Li, Liang Liu, Hehe Hu, Shengqiang Kang, Bo Xu, Hengyong |
author_sort | Wei, Rongxue |
collection | PubMed |
description | Our previous study described the mechanism of goose fatty liver formation from cell culture and transcriptome. However, how lipidome of goose liver response to overfeeding is unclear. In this study, we used the same batch of geese (control group and corn flour overfeeding group) to explore the lipidome changes and underlying metabolic mechanisms of goose fatty liver formation. Liquid chromatography-mass spectrometry (LC-MS) was provided to lipidome detection. Liver lipidomics profiles analysis was performed by principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), different lipids were identified and annotated, and the enriched metabolic pathways were showed. The results of PCA, PLS-DA, and OPLS-DA displayed a clear separation and discrimination between control group and corn flour overfeeding group. Two hundred and fifty-one different lipids were yielded, which were involved in triglyceride (TG), diglyceride (DG), phosphatidic acids (PA), phosphatidylinositols (PI), phosphatidylethanolamines (PE), phosphatidylcholines (PC), lyso-phosphatidylcholines (LPC), monogalactosylmonoacylglycerol (MGMG), sphingolipids (SM), ceramides (Cer), and hexaglycosylceramides (Hex1Cer). Different lipids were enriched in glycerophospholipid metabolism, glycerolipid metabolism, phosphatidylinositol signaling system, inositol phosphate metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis and sphingolipid metabolism. In conclusion, this is the first report describing the goose fatty liver formation from lipidomics, this study might provide some insights into the underlying glucolipid metabolism disorders in the process of fatty liver formation. |
format | Online Article Text |
id | pubmed-9811251 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-98112512023-01-05 Lipidomics analysis reveals new insights into the goose fatty liver formation Wei, Rongxue Ning, Rong Han, Chunchun Wei, Shouhai Teng, Yongqiang Li, Liang Liu, Hehe Hu, Shengqiang Kang, Bo Xu, Hengyong Poult Sci PHYSIOLOGY AND REPRODUCTION Our previous study described the mechanism of goose fatty liver formation from cell culture and transcriptome. However, how lipidome of goose liver response to overfeeding is unclear. In this study, we used the same batch of geese (control group and corn flour overfeeding group) to explore the lipidome changes and underlying metabolic mechanisms of goose fatty liver formation. Liquid chromatography-mass spectrometry (LC-MS) was provided to lipidome detection. Liver lipidomics profiles analysis was performed by principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), different lipids were identified and annotated, and the enriched metabolic pathways were showed. The results of PCA, PLS-DA, and OPLS-DA displayed a clear separation and discrimination between control group and corn flour overfeeding group. Two hundred and fifty-one different lipids were yielded, which were involved in triglyceride (TG), diglyceride (DG), phosphatidic acids (PA), phosphatidylinositols (PI), phosphatidylethanolamines (PE), phosphatidylcholines (PC), lyso-phosphatidylcholines (LPC), monogalactosylmonoacylglycerol (MGMG), sphingolipids (SM), ceramides (Cer), and hexaglycosylceramides (Hex1Cer). Different lipids were enriched in glycerophospholipid metabolism, glycerolipid metabolism, phosphatidylinositol signaling system, inositol phosphate metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis and sphingolipid metabolism. In conclusion, this is the first report describing the goose fatty liver formation from lipidomics, this study might provide some insights into the underlying glucolipid metabolism disorders in the process of fatty liver formation. Elsevier 2022-12-15 /pmc/articles/PMC9811251/ /pubmed/36586388 http://dx.doi.org/10.1016/j.psj.2022.102428 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | PHYSIOLOGY AND REPRODUCTION Wei, Rongxue Ning, Rong Han, Chunchun Wei, Shouhai Teng, Yongqiang Li, Liang Liu, Hehe Hu, Shengqiang Kang, Bo Xu, Hengyong Lipidomics analysis reveals new insights into the goose fatty liver formation |
title | Lipidomics analysis reveals new insights into the goose fatty liver formation |
title_full | Lipidomics analysis reveals new insights into the goose fatty liver formation |
title_fullStr | Lipidomics analysis reveals new insights into the goose fatty liver formation |
title_full_unstemmed | Lipidomics analysis reveals new insights into the goose fatty liver formation |
title_short | Lipidomics analysis reveals new insights into the goose fatty liver formation |
title_sort | lipidomics analysis reveals new insights into the goose fatty liver formation |
topic | PHYSIOLOGY AND REPRODUCTION |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9811251/ https://www.ncbi.nlm.nih.gov/pubmed/36586388 http://dx.doi.org/10.1016/j.psj.2022.102428 |
work_keys_str_mv | AT weirongxue lipidomicsanalysisrevealsnewinsightsintothegoosefattyliverformation AT ningrong lipidomicsanalysisrevealsnewinsightsintothegoosefattyliverformation AT hanchunchun lipidomicsanalysisrevealsnewinsightsintothegoosefattyliverformation AT weishouhai lipidomicsanalysisrevealsnewinsightsintothegoosefattyliverformation AT tengyongqiang lipidomicsanalysisrevealsnewinsightsintothegoosefattyliverformation AT liliang lipidomicsanalysisrevealsnewinsightsintothegoosefattyliverformation AT liuhehe lipidomicsanalysisrevealsnewinsightsintothegoosefattyliverformation AT hushengqiang lipidomicsanalysisrevealsnewinsightsintothegoosefattyliverformation AT kangbo lipidomicsanalysisrevealsnewinsightsintothegoosefattyliverformation AT xuhengyong lipidomicsanalysisrevealsnewinsightsintothegoosefattyliverformation |