Cargando…
Classification of motor imagery electroencephalogram signals by using adaptive cross-subject transfer learning
INTRODUCTION: Electroencephalogram (EEG)-based motor imagery (MI) classification is an important aspect in brain-computer interfaces (BCIs), which bridges between neural system and computer devices decoding brain signals into recognizable machine commands. However, due to the small number of trainin...
Autores principales: | Feng, Jin, Li, Yunde, Jiang, Chengliang, Liu, Yu, Li, Mingxin, Hu, Qinghui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9811670/ https://www.ncbi.nlm.nih.gov/pubmed/36618992 http://dx.doi.org/10.3389/fnhum.2022.1068165 |
Ejemplares similares
-
Motor imagery electroencephalogram classification algorithm based on joint features in the spatial and frequency domains and instance transfer
por: Wang, Ximiao, et al.
Publicado: (2023) -
Electroencephalogram-Based Motor Imagery Classification Using Deep Residual Convolutional Networks
por: Huang, Jing-Shan, et al.
Publicado: (2021) -
Feature optimization based on improved novel global harmony search algorithm for motor imagery electroencephalogram classification
por: Shi, Bin, et al.
Publicado: (2022) -
Single-channel EEG signal extraction based on DWT, CEEMDAN, and ICA method
por: Hu, Qinghui, et al.
Publicado: (2022) -
Selective Cross-Subject Transfer Learning Based on Riemannian Tangent Space for Motor Imagery Brain-Computer Interface
por: Xu, Yilu, et al.
Publicado: (2021)