Cargando…

Solubilization of sulfuric acid lignin by ball mill treatment with excess amounts of organic compounds

In order to improve the solubility of sulfuric acid lignin (SL) in N,N-dimethylformamide (DMF), dry ball milling with excess amounts of additives such as l-tartaric acid was performed. Although the ball-milled SL without any additives was not soluble in DMF, when the SL was ball milled with an exces...

Descripción completa

Detalles Bibliográficos
Autores principales: Takada, Masatsugu, Okazaki, Yutaka, Kawamoto, Haruo, Sagawa, Takashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9811933/
https://www.ncbi.nlm.nih.gov/pubmed/36686954
http://dx.doi.org/10.1039/d2ra07235a
Descripción
Sumario:In order to improve the solubility of sulfuric acid lignin (SL) in N,N-dimethylformamide (DMF), dry ball milling with excess amounts of additives such as l-tartaric acid was performed. Although the ball-milled SL without any additives was not soluble in DMF, when the SL was ball milled with an excessive amount of l-tartaric acid (the concentration of SL to be 0.1%), the dispersion and solubility of SL in DMF detected by the dynamic light scattering was greatly improved. Furthermore, the DMF solution showed clear photoluminescence, indicating that the distance between luminophores was modulated due to dispersion on the nanoscale. The structural analysis of the isolated lignin showed a decrease in molecular weight and the introduction of carboxylic acid groups. In other words, the introduction of hydrophilic functional groups into the lignin and simultaneously decrease in the molecular weight due to the cleavage of lignin linkages is considered to result in good dispersion in DMF on both the micro and macro scales. Similar effects were observed with the other chemicals containing several hydrophilic groups such as citric acid, d-glucose, and polyacrylic acid. Furthermore, this method is applicable to various lignins other than SL, and it is expected to utilize unused lignin resources.